Table of contents
General S-2
Synthesis and Characterization of Compounds 2-10 S-6
Single crystal X-ray structure analyses S-7

General: All reactions were carried out in flame-dried glassware under Ar. All the solvents were purified by distillation over the drying agents indicated and were transferred under $\operatorname{Ar} . \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{CaH}_{2}\right)$, n-pentane, toluene, benzene (Na / K). IR: Nicolet FT-7199 spectrometer, wavenumbers in cm^{-1}. MS (EI): Finnigan MAT 8200 (70 eV), ESIMS: Finnigan MAT 95, accurate mass determinations: Bruker APEX III FT-MS (7 T magnet). NMR: Spectra were recorded on a Bruker AV 400 or a AV 600 spectrometer in the solvents indicated; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts (δ) are given in ppm relative to TMS, coupling constants (\mathcal{J}) in Hz . The solvent signals were used as references and the chemical shifts converted to the TMS scale. All commercially available compounds (Acros, ABCR, Fluka, Lancaster, Alfa Aesar, Aldrich) were used as received unless stated otherwise. 2,4,6-Tris(isopropyl)phenylphosphine ${ }^{1}$ and 1-chloro-2,3(diisopropylamino)cyclopropenium tetrafluoroborate ${ }^{2}$ were prepared according to literature procedures.

Compound 2: A mixture containing $(\mathrm{PhO})_{3} \mathrm{PO}(25.4 \mathrm{~g}$, previously melted and dried in vacuum at
 $60^{\circ} \mathrm{C}$ for 3 h), bromide $1(7.4 \mathrm{~g}, 16.97 \mathrm{mmol}$) and 2-pyridyldiphenylphosphine (4.49 g , 17.05 mmol) was stirred overnight at $120^{\circ} \mathrm{C}$. Once cooled to rt, toluene (100 mL) was added and the suspension stirred for three hours. After filtration of the organic solvents, the remaining residue was washed with toluene three times, re-dissolved in $\mathrm{MeOH}(30 \mathrm{~mL})$ and precipitated with $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$. Finally, the light grey solid thus obtained was dried in vacuum affording the desired product ($2.84 \mathrm{~g}, 24 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=8.22-8.07(\mathrm{~m}, 11 \mathrm{H}), 8.02-7.91(\mathrm{~m}$, $4 \mathrm{H}), 7.66-7.57(\mathrm{~m}, 5 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.36 \mathrm{ppm}(\mathrm{m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=$ $150.7(\mathrm{~d}, J=20 \mathrm{~Hz}), 142.3(\mathrm{~d}, J=119 \mathrm{~Hz}), 138.4(\mathrm{~d}, J=11 \mathrm{~Hz}), 135.3(\mathrm{~d}, J=3 \mathrm{~Hz}), 135.2(\mathrm{~d}, J=11 \mathrm{~Hz})$, $135.1,134.7(\mathrm{~d}, J=11 \mathrm{~Hz}), 134.2(\mathrm{~d}, J=26 \mathrm{~Hz}), 130.1(\mathrm{~d}, J=14 \mathrm{~Hz}), 130.0(\mathrm{~d}, J=13 \mathrm{~Hz}), 129.0(\mathrm{~d}, J=$ $3 \mathrm{~Hz}), 118.0(\mathrm{~d}, J=89 \mathrm{~Hz}), 117.1(\mathrm{~d}, J=89 \mathrm{~Hz}), 16.8 \mathrm{ppm}(\mathrm{t}, J=47 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta$ $=21.5(\mathrm{~d}, \mathrm{~J}=18 \mathrm{~Hz}), 16.3 \mathrm{ppm}(\mathrm{d}, J=18 \mathrm{~Hz})$; MS (ESI+): m/z (\%): 538.3 (100); HRMS (ESI+): m/z: calcd. for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{NP}_{2}$: 538.1848; found: 538.1854.

Compound 3: $\mathrm{NH}_{3}(45 \mathrm{~mL})$ was condensed in a 100 mL two neck round-bottom flask containing
 compound $2(1.14 \mathrm{~g}, 1.63 \mathrm{mmol})$ and $\mathrm{NaNH}_{2}(410 \mathrm{mg}, 10.51 \mathrm{mmol})$, and the mixture stirred for 7 h at $-35^{\circ} \mathrm{C}$. After that, the NH_{3} was allowed to slowly evaporate before toluene (15 mL) was added to the reaction mixture. The yellow organic phase was filtered and the remaining solid washed at rt with toluene ($2 \times 10 \mathrm{~mL}$). Evaporation of the combined organic phases afforded the desired compound as a yellow solid ($770 \mathrm{mg}, 88 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{d}_{8}-\right.$ THF): $\delta=8.45(\mathrm{~m}, 1 \mathrm{H}), 8.38(\mathrm{~m}, 1 \mathrm{H}), 7.64(\mathrm{~m}, 4 \mathrm{H}), 7.63(\mathrm{~m}, 6 \mathrm{H}), 7.62(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{~m}$,

[^0]$2 \mathrm{H}), 7.18(\mathrm{~m}, 6 \mathrm{H}), 7.16(\mathrm{~m}, 1 \mathrm{H}), 7.10 \mathrm{ppm}(\mathrm{m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{d}_{8}-\mathrm{THF}\right): \delta=161.7$ (dd, $J=119$, $10 \mathrm{~Hz}), 149.4(\mathrm{~d}, ~ J=18 \mathrm{~Hz}), 138.4(\mathrm{dd}, J=89,7 \mathrm{~Hz}), 138.2$ (dd, $J=88,6 \mathrm{~Hz}), 135.7(\mathrm{~d}, J=9 \mathrm{~Hz}), 133.2$ (d, $J=10 \mathrm{~Hz}$), $133.0(\mathrm{~d}, J=10 \mathrm{~Hz}), 129.9(\mathrm{~d}, J=3 \mathrm{~Hz}), 129.6(\mathrm{~d}, J=3 \mathrm{~Hz}), 129.1(\mathrm{~d}, J=22 \mathrm{~Hz}), 128.2$ (d, $J=11 \mathrm{~Hz}$), $127.8(\mathrm{~d}, J=11 \mathrm{~Hz}), 123.8(\mathrm{~d}, J=3 \mathrm{~Hz}), 11.8 \mathrm{ppm}(\mathrm{dd}, J=122,119 \mathrm{~Hz})$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=8.64(\mathrm{~m}, 1 \mathrm{H}), 8.31(\mathrm{~m}, 1 \mathrm{H}), 8.04(\mathrm{~m}, 4 \mathrm{H}), 7.90(\mathrm{~m}, 6 \mathrm{H}), 7.02(\mathrm{~m}, 1 \mathrm{H}), 7.00$ (m, 9H), 6.99 (m, 6H); $6.46 \mathrm{ppm}(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=161.3$ (dd, $J=119,10 \mathrm{~Hz}$), 148.9 (d, $J=18 \mathrm{~Hz}$), 137.9 (dd, $J=89,7 \mathrm{~Hz}$), 137.6 (dd, $J=88,6 \mathrm{~Hz}$), 134.9 (d, $J=9 \mathrm{~Hz}$), 132.9 (d, $J=$ $10 \mathrm{~Hz}), 132.6(\mathrm{~d}, J=10 \mathrm{~Hz}), 129.4(\mathrm{~d}, J=2 \mathrm{~Hz}), 129.3(\mathrm{~d}, J=3 \mathrm{~Hz}), 128.7(\mathrm{~d}, J=22 \mathrm{~Hz}), 127.8(\mathrm{~d}, J=$ $11 \mathrm{~Hz}), 127.6(\mathrm{~d}, J=11 \mathrm{~Hz}), 122.9(\mathrm{~d}, J=3 \mathrm{~Hz}), 12.3 \mathrm{ppm}(\mathrm{dd}, J=118,115 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}-\mathrm{NMR}(162 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=-2.14(\mathrm{~d}, J=85 \mathrm{~Hz}),-5.55 \mathrm{ppm}(\mathrm{d}, J=85 \mathrm{~Hz}$); IR (neat): $v \square=3050,1571,1476,1433,1298$, 1270, 1173, 1097, 1026, 970, 741, $691 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 536 (100), 459 (43), 352 (12), 262 (34), 183 (33), 165 (21); HRMS (EI): m/z calcd. for $\mathrm{C}_{36} \mathrm{H}_{29} \mathrm{NP}_{2}$: 537.1775; found: 537.1770 ; elemental analysis calcd. (\%) for $\mathrm{C}_{36} \mathrm{H}_{29} \mathrm{NP}_{2}$: C 80.43, H 5.44, N 2.61; found: C 79.76, H 5.74, N 1.92.

Compound 4: $\left[\mathrm{Ph}_{3} \mathrm{PAuCl}\right](70 \mathrm{mg}, 0.142 \mathrm{mmol})$ was added to a precooled solution of compound

SbF_{6} $3(75 \mathrm{mg}, 0.140 \mathrm{mmol})$ in THF (3 mL) at $0^{\circ} \mathrm{C}$ and the resulting mixture stirred for 1 h at the same temperature. Subsequently, $\mathrm{NaSbF}_{6}(36.3 \mathrm{mg}, 0.140 \mathrm{mmol})$ was added and the suspension stirred for an additional hour. Evaporation of the volatile materials afforded a white solid that was re-dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and filtered. Concentration of the organic phase in vacuum afforded the desired product as a white solid ($168 \mathrm{mg}, 97 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=8.44(\mathrm{~m}, 1 \mathrm{H}), 7.80(\mathrm{~m}, 4 \mathrm{H}), 7.71(\mathrm{~m}, 6 \mathrm{H})$, 7.50-7.42 (m, 10H), $7.32(\mathrm{~m}, 6 \mathrm{H}), 7.30(\mathrm{~m}, 4 \mathrm{H}), 7.26(\mathrm{~m}, 6 \mathrm{H}), 7.22(\mathrm{~m} \mathrm{1H}), 7.01 \mathrm{ppm}(\mathrm{m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=156.0$ (dt, $J=114,3 \mathrm{~Hz}$), $150.4(\mathrm{~d}, J=18 \mathrm{~Hz}), 136.4(\mathrm{~d}, J=9 \mathrm{~Hz}), 134.1(\mathrm{~d}, J=$ $14 \mathrm{~Hz}), 133.6(\mathrm{~d}, J=10 \mathrm{~Hz}), 133.3(\mathrm{~d}, J=10 \mathrm{~Hz}), 132.2(\mathrm{~d}, J=3 \mathrm{~Hz}), 132.1$ (dd, $J=91,4 \mathrm{~Hz}), 132.0(\mathrm{~d}$, $J=3 \mathrm{~Hz}), 131.8(\mathrm{~d}, J=2 \mathrm{~Hz}), 131.7(\mathrm{dd}, J=92,5 \mathrm{~Hz}), 130.0(\mathrm{~d}, J=55 \mathrm{~Hz}), 129.3(\mathrm{~d}, J=11 \mathrm{~Hz}), 128.8$ (d, $J=12 \mathrm{~Hz}$), $128.6(\mathrm{~d}, J=23 \mathrm{~Hz}), 125.4(\mathrm{~d}, J=3 \mathrm{~Hz}), 24.5 \mathrm{ppm}(\mathrm{dt}, J=86,84 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}-\mathrm{NMR}(162 \mathrm{MHz}$, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=41.28(\mathrm{t}, J=6 \mathrm{~Hz}$), 19.70 (dd, $J=30,7 \mathrm{~Hz}$), 15.03 ppm (dd, $J=30,7 \mathrm{~Hz}$); IR (neat): $v \square=$ 3059, 1571, 1481, 1435, 1312, 1184, 1127, 1099, 1068, 1027, 998, 844, 744, 691, $656 \mathrm{~cm}^{-1}$; MS (ESI+): $\mathrm{m} / \mathrm{z}(\%): 996.3$ (100); HRMS (ESI+): m/z calcd. for $\mathrm{C}_{54} \mathrm{H}_{44} \mathrm{AuNP}_{3}$: 996.2347; found: 996.2347; elemental analysis calcd. (\%) for $\mathrm{C}_{54} \mathrm{H}_{44} \mathrm{AuNP}_{3} \mathrm{SbFF}_{6}$: C 52.62, H 3.60, N 1.14; found: C 50.16, H 3.29, N 0.92.

Compound 5: $\mathrm{CuCl}(4.8 \mathrm{mg}, 0.0485 \mathrm{mmol})$ was added to a solution of $4(48 \mathrm{mg}, 0.0390 \mathrm{mmol})$ in

$5 \quad \mathrm{SbF}_{6}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ and the mixture stirred at this temperature overnight. Removal of the solvent in vacuum provided the desired compound as an orange solid (49.3 $\mathrm{mg}, 95 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=9.06(\mathrm{~m}, 1 \mathrm{H}), 7.97(\mathrm{dd}, J=12,8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.85$ (tdt, $J=8,5,2 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~m}, 6 \mathrm{H}), 7.67(\mathrm{~m}, 1 \mathrm{H}), 7.63(\mathrm{~m}, 1 \mathrm{H}), 7.54$ $(\mathrm{m}, 3 \mathrm{H}), 7.48(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{~m}, 6 \mathrm{H}), 7.30(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~m}, 6 \mathrm{H})$,
7.24 (m, 2H), 7.16 (ddq, $J=8,5,1 \mathrm{~Hz}, 1 \mathrm{H}), 7.11$ (m, 6H), $6.94 \mathrm{ppm}(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(150 \mathrm{MHz}$, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=152.8(\mathrm{dd}, J=130,15 \mathrm{~Hz}), 150.2(\mathrm{~d}, J=16 \mathrm{~Hz}), 138.9(\mathrm{~d}, J=9 \mathrm{~Hz}), 134.1,134.0(\mathrm{~d}, J=14$ Hz), $133.89(\mathrm{~d}, J=10 \mathrm{~Hz}), 133.83,133.5(\mathrm{~d}, J=10 \mathrm{~Hz}), 133.2(\mathrm{~d}, J=10 \mathrm{~Hz}), 133.1(\mathrm{~d}, J=3 \mathrm{~Hz}), 132.2$ (d, $J=2 \mathrm{~Hz}$), 129.9 (d, $J=12 \mathrm{~Hz}), 129.8(\mathrm{~d}, J=12 \mathrm{~Hz}), 129.6(\mathrm{~d}, J=12 \mathrm{~Hz}), 129.4$ (d, $J=24 \mathrm{~Hz}), 129.2$ (d, $J=12 \mathrm{~Hz}$), 128.9 (d, $J=58 \mathrm{~Hz}$), 128.5 (dd, $J=89,5 \mathrm{~Hz}$), 128.0 (d, $J=2 \mathrm{~Hz}$), 126.4 (dd, $J=76,3 \mathrm{~Hz}$), $124.2\left(\mathrm{~d}, ~ J=79 \mathrm{~Hz}\right.$), 17.5 ppm (ddd, $J=68,58,52 \mathrm{~Hz}$); ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(122 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$): $\delta=39.7(\mathrm{~m}), 26.2$ ppm (ddd, $J=49,23,9 \mathrm{~Hz}$); IR (neat): $v \square=3050,2956,1575,1481,1435,1311,1262,1185,1161$, 1096, 991, 741, 689, $650 \mathrm{~cm}^{-1}$; MS (ESI+): m/z (\%): 1094.2 (60); HRMS (ESI+): m/z: calcd. for $\mathrm{C}_{54} \mathrm{H}_{44} \mathrm{AuClCuNP}_{3}$: 1094.1331; found: 1094.1354; elemental analysis calcd. (\%) for $\mathrm{C}_{54} \mathrm{H}_{44} \mathrm{AuClCuNP}_{3^{*}} \mathrm{SbF}_{6}$: C 48.71, H 3.33, N 1.05; found: C 47.01, H 3.47, N 0.95 .

Compound 6: [(Me $\left.\left.\mathrm{Me}_{2} \mathrm{~S}\right) \mathrm{AuCl}\right](13.5 \mathrm{mg}, 0.0458 \mathrm{mmol})$ was added to a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of 4

$6 \quad \mathrm{SbF}_{6}^{-}$ ($54 \mathrm{mg}, 0.0438 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and the mixture was stirred 2 h at this temperature. Evaporation in vacuum of all volatile materials afforded 6 as a white solid ($54.5 \mathrm{mg}, 85 \%$). Crystals suitable for X-ray diffraction analysis were grown by slow diffusion of pentane in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions of the product. ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=8.05(\mathrm{~m}, 1 \mathrm{H}), 7.99(\mathrm{~m}, 2 \mathrm{H}), 7.89(\mathrm{~m}, 6 \mathrm{H}), 7.80(\mathrm{~m}, 2 \mathrm{H}), 7.75(\mathrm{~m}, 1 \mathrm{H})$, $7.59(\mathrm{~m}, 3 \mathrm{H}), 7.58(\mathrm{~m}, 1 \mathrm{H}), 7.52(\mathrm{~m} 1 \mathrm{H}), 7.47(\mathrm{~m}, 3 \mathrm{H}), 7.46(\mathrm{~m}, 6 \mathrm{H}), 7.41(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{~m}$, $2 \mathrm{H}), 7.27(\mathrm{~m}, 6 \mathrm{H}), 7.19(\mathrm{~m}, 6 \mathrm{H}), 7.15 \mathrm{ppm}(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=152.0(\mathrm{dt}, J=117$, $3 \mathrm{~Hz}), 150.2(\mathrm{~d}, J=19 \mathrm{~Hz}), 138.1(\mathrm{~d}, J=9 \mathrm{~Hz}), 134.5(\mathrm{~d}, J=10 \mathrm{~Hz}), 134.3(\mathrm{~d}, J=10 \mathrm{~Hz}), 134.12(\mathrm{~d}, J=$ $14 \mathrm{~Hz}), 134.11(\mathrm{~d}, J=10 \mathrm{~Hz}), 133.9(\mathrm{~d}, J=3 \mathrm{~Hz}), 133.6(\mathrm{~d}, J=3 \mathrm{~Hz}), 133.3(\mathrm{~d}, J=3 \mathrm{~Hz}), 132.5(\mathrm{~d}, J=2$ $\mathrm{Hz}), 129.82(\mathrm{~d}, J=12 \mathrm{~Hz}), 129.81(\mathrm{~d}, J=23 \mathrm{~Hz}), 129.52(\mathrm{~d}, J=12 \mathrm{~Hz}), 129.49(\mathrm{~d}, J=12 \mathrm{~Hz}), 129.1(\mathrm{~d}$, $J=12 \mathrm{~Hz}), 129.0(\mathrm{~d}, J=58 \mathrm{~Hz}), 127.3(\mathrm{dd}, J=89,3 \mathrm{~Hz}), 127.2(\mathrm{~d}, J=3 \mathrm{~Hz}), 126.5(\mathrm{dd}, J=89,6 \mathrm{~Hz})$, 125.4, (d, $J=87 \mathrm{~Hz}$), 14.2 ppm (ddd, $J=66,42,40 \mathrm{~Hz}$); ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$): $\delta=35.4(\mathrm{~m}), 27.5$ (m), $21.9 \mathrm{ppm}(\mathrm{t}, J=7.1 \mathrm{~Hz}$); IR (neat): $v \square=3057$, 2963, 1586, 1572, 1481, 1435, 1311, 1260, 1187, 1094, 1024, 998, 944, 798, 740, 711, $689 \mathrm{~cm}^{-1}$; MS (ESI+): m/z (\%): 1228.3 (100); HRMS (ESI+): m/z: calcd. for $\mathrm{C}_{54} \mathrm{H}_{44} \mathrm{Au}_{2} \mathrm{CINP}_{3}$: 1228.1701; found: 1228.1695.

Compound 7: 2,4,6-Tris(isopropyl)phenylphosphine ($1.63 \mathrm{~g}, 6.90 \mathrm{mmol}$) was added to a mixture
 Pr of chlorocyclopropenium salt ($1.24 \mathrm{~g}, 3.45 \mathrm{mmol}$) in bis(2-methoxyethyl)ether $(15 \mathrm{~mL})$ and the resulting mixture was heated at $135{ }^{\circ} \mathrm{C}$ for 24 hours. After cooling to room temperature, the solvent was removed in vacuum at $40^{\circ} \mathrm{C}$, the residue dissolved in dichoromethane (20 mL) and washed with a saturated solution of $\mathrm{NaBF}_{4}(3 \times 15 \mathrm{~mL})$. Once dried over MgSO_{4}, the organic phase was concentrated and the residue purified by flash column chromatography ($1: 9$, acetone : dichloromethane), affording the desired compound as a white solid ($1.20 \mathrm{~g}, 62 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.10$ (dd, J $=14.0,6.8 \mathrm{~Hz}, 12 \mathrm{H}), 1.19$ (dd, $J=13.4,6.8 \mathrm{~Hz}, 12 \mathrm{H}$), 1.20 (d, $J=6.5 \mathrm{~Hz}, 6 \mathrm{H}$), 1.32 (dd, $J=6.6,2.5 \mathrm{~Hz}$, 12 H), 2.87 (m, 1H), $3.44(\mathrm{~m}, 2 \mathrm{H}), 3.57$ (m, 2H), 4.04 (m, 2H), 5.47 (d, J = $238 \mathrm{~Hz}, 1 \mathrm{H}$), 7.07 (d, J = 2.8
$\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-100.80 \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=21.1,21.3(\mathrm{~d}, \mathrm{~J}=$ 4.9 Hz), 22.0, 23.7 (d, $J=3.8 \mathrm{~Hz}$), $24.0(\mathrm{~d}, J=20.9 \mathrm{~Hz}), 33.5(\mathrm{~d}, J=14.5 \mathrm{~Hz}), 34.5,51.2,53.9,106.9$, $119.3,122.4,136.9,153.6,154.7 \mathrm{ppm}(\mathrm{d}, J=13.6 \mathrm{~Hz}$). IR (neat) $v \square=688,882,1032,1047,1152,1357$, 1459, 1542, 1711, 1876, $2955 \mathrm{~cm}^{-1}$; HRMS calcd. for $\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{P}^{+}$: 471.386759; found: 471.386263.

Compound 8: KHMDS ($46.1 \mathrm{mg}, 0.231 \mathrm{mmol}$) was added to a cooled $\left(-80^{\circ} \mathrm{C}\right)$ suspension of 7
 $(129.0 \mathrm{mg}, 0.231 \mathrm{mmol})$ in dry toluene $(15 \mathrm{~mL})$. The resulting mixture was allowed to reach rt and stirred for additional 2 h . The suspension thus formed was filtered under argon atmosphere and the organic phase concentrated in vacuum. The desired phosphinidene is stable at room temperature only for a few hours. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{8}-\mathrm{THF}$) $\delta=0.92$ (d, $J=6.6 \mathrm{~Hz}, 12 \mathrm{H}$), 1.16 (dd, $J=31.7,7.0 \mathrm{~Hz}$, 12 H), 1.23 (d, $J=6.8 \mathrm{~Hz}, 6 \mathrm{H}$), 1.35 (d, $J=6.6 \mathrm{~Hz}, 12 \mathrm{H}), 2.81(\mathrm{~m}, 1 \mathrm{H}), 3,16(\mathrm{~m}$, $2 \mathrm{H}), 3.86(\mathrm{~m}, 2 \mathrm{H}), 4.36(\mathrm{~m}, 2 \mathrm{H}), 6.91 \mathrm{ppm}(\mathrm{d}, \mathrm{J}=1.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=23.4(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}$), 23.7, 24.6, $25.5(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 33.6(\mathrm{~d}, J=10.4 \mathrm{~Hz}), 35.0,49.4,124.6,128.4,129.3,147.2$, $155.0(\mathrm{~d}, J=6.6 \mathrm{~Hz})$ ppm. ${ }^{31} \mathrm{P}$ NMR (162 MHz , $\mathrm{d}_{8}-\mathrm{THF}$) $\delta=-83.33 \mathrm{ppm}$; HRMS calcd. for $\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{P}^{+}$: 470.379141 ; found: 470.378989 .

Compound 9: A solution of 8 in toluene was prepared from 7 ($84.0 \mathrm{mg}, 0.150 \mathrm{mmol}$) and
 KHMDS ($29.9 \mathrm{mg}, 0.150 \mathrm{mmol}$) as described above. This solution was cooled to $-78{ }^{\circ} \mathrm{C}$ before $\left(\mathrm{Me}_{2} \mathrm{~S}\right) \mathrm{AuCl}(176.6 \mathrm{mg}, 0.300 \mathrm{mmol})$) was added. The resulting mixture was allowed to slowly reach ambient temperature during 16 h . Removal of the solvent in vacuum and purification of the residue by flash chromatography (1:9, acetone:dichoromethane), afforded the desired compound as a white solid ($117 \mathrm{mg}, 83 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=1.13(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 12 \mathrm{H})$, $1.16(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.20(\mathrm{~m}(\mathrm{br}), 12 \mathrm{H}) 1.23(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H}), 2.79(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~m}$, $2 \mathrm{H}), 4.28(\mathrm{~m}, 2 \mathrm{H}), 7.01 \mathrm{ppm}(\mathrm{d}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=-54.00 \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=20.7,21.2,22.7,23.5,33.0,33.1,33.5,110.8(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 122.5,122.8,122.9$, 123.0, 133.8, 150.8, $151.7 \mathrm{ppm}(\mathrm{d}, J=9.2 \mathrm{~Hz}$); IR (neat) $v \square=679,894,1031,1142,1358,1454,1543$, 1711, 1866, $2963 \mathrm{~cm}^{-1}$; HRMS calcd. for $\mathrm{C}_{30} \mathrm{H}_{51} \mathrm{Au} 2 \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{PNa}^{+}$: 957.238922; found 957.239014.

Compound 10: A solution of 8 in toluene (15 mL) was prepared from $7(65.0 \mathrm{mg}, 0.116 \mathrm{mmol})$
and KHMDS ($29.9 \mathrm{mg}, 0.150 \mathrm{mmol}$) as described above. This solution was
 cooled to $-78{ }^{\circ} \mathrm{C}$ before $\left[\left(\mathrm{Me}_{2} \mathrm{~S}\right) \mathrm{AuCl}\right](34.3 \mathrm{mg}, 0.116 \mathrm{mmol})$ was added followed by $[\mathrm{RhCl}(\mathrm{cod})]_{2}(28.6 \mathrm{mg}, 0.058 \mathrm{mmol})$. The resulting mixture was allowed to come to room temperature and was stirred for additional 16 h . Finally, the obtained suspension was filtered and dried in vacuum to afford the desired product as a yellow solid ($60 \mathrm{mg}, 54 \%$). ${ }^{31} \mathrm{P}-\mathrm{NMR}$ indicated this compound to be contaminated with 8% of 9. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=1.15(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H}), 1.20(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H}), 1.26(\mathrm{~d}, J=6.9$
$\mathrm{Hz}, 6 \mathrm{H}), 1.33(\mathrm{~m}(\mathrm{br}), 12 \mathrm{H}), 1.88(\mathrm{~m}(\mathrm{br}), 2 \mathrm{H}), 2.00(\mathrm{~m}(\mathrm{br}), 2 \mathrm{H}), 2.41(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~m}, 2 \mathrm{H})$, $4.16(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{~m}(\mathrm{br}), 2 \mathrm{H}), 5.21(\mathrm{~m}(\mathrm{br}), 1 \mathrm{H}), 5.52(\mathrm{~m}(\mathrm{br}), 1 \mathrm{H}), 6.98(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{31} \mathrm{P}$ NMR $\left(161 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=-30.94(\mathrm{~d}, J=122 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=20.7,21.2,22.7$, $23.5,33.0,33.1,33.5,110.8(\mathrm{~d}, J=9.0 \mathrm{~Hz}$), 122.5, 122.8, 122.9, 123.0, 133.8, 150.8, 151.7 ($\mathrm{d}, J=9.2$ $\mathrm{Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=21.7,23.9,25.7,29.0,29.9,31.3,32.4,34.0,34.5,80.1,97.8$, $98.7,117.7,124.1,124.2,129.4,150.4,152.6(\mathrm{~d}, J=8.0 \mathrm{~Hz}$) ppm. IR (neat) $v \square=678,883,1036,1139$, 1349, 1447, 1518, 1855, $2948 \mathrm{~cm}^{-1}$. HRMS calcd. for $\mathrm{C}_{38} \mathrm{H}_{63} \mathrm{AuClN}_{2} \mathrm{PRh}$: 913.313556, found 913.313689.

Single crystal X-ray structure analyses

Crystal structure analysis of 3

Figure S-1. Molecular structure of $\mathbf{3} \cdot 1 / 2\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)$.
Crystal data for $3 \cdot 1 / 2 \mathrm{C}_{7} \mathrm{H}_{8}$: Chemical formula $2\left[\mathrm{C}_{36} \mathrm{H}_{29} \mathrm{~N} \mathrm{P} \mathrm{P}_{2}\right] \cdot \mathrm{C}_{7} \mathrm{H}_{8}, F_{w}=1167.22 \mathrm{~g} \mathrm{~mol}^{-1}$, yellow needle from toluene, crystal size $0.05 \times 0.02 \times 0.02 \mathrm{~mm}^{3}$, crystal system triclinic, space group $P 1, a=$ 10.5881(12), $b=11.7546(14), c=13.4581(16) \AA, \alpha=73.849(2), \beta=73.626(2), V=78.953(2)^{\circ}, V=$ $1531.9(3) \AA^{3}, T=100 \mathrm{~K}, \rho_{\mathrm{c}}=1.265 \mathrm{Mg} \mathrm{m}^{-3}, Z=1, \lambda=0.71073 \AA, \mu=0.172 \mathrm{~mm}^{-1}$, Gaussian absorption correction ($T_{\text {min }}=0.99209, T_{\max }=0.99724$), scaling SADABS, Brucker AXS Mach3 Apexll diffractometer equipped with Helios multilayer X-ray optics, $5.10<\theta<32.04^{\circ}, 47413$ reflections collected, 10542 unique reflections ($R_{\text {int }}=0.0715$), 7527 reflections with $I>2 \sigma(I)$. Intensity statistics:

lution	\#Data	eory	\%Complete	Redun	Mean I	an I/s	R(int) R	Rsigma
Inf - 1.80	538	557	96.6	6.09	52.2	47.23	0.0261	0.0150
1.80-1.44	551	551	100.0	6.38	19.8	33.89	0.0376	0.0198
$1.44-1.26$	538	538	100.0	6.17	17.9	31.46	0.0440	0.0222
$1.26-1.14$	578	578	100.0	5.78	16.7	27.07	0.0477	0.0254
$1.14-1.06$	545	545	100.0	5.44	9.7	19.27	0.0666	0.0366
$1.06-1.00$	546	546	100.0	5.09	8.0	15.84	0.0770	0.0442
1.00-0.95	545	545	100.0	4.88	8.4	16.06	0.0818	0.0459
0.95-0.91	531	531	100.0	4.64	6.8	13.50	0.1001	0.0564
0.91-0.87	662	662	100.0	4.43	6.5	12.65	0.1040	0.0619
$0.87-0.84$	563	563	100.0	4.23	5.7	10.34	0.1252	0.0721
0.84-0.81	653	653	100.0	4.06	4.7	8.90	0.1492	0.0884
0.81-0.78	749	749	100.0	3.93	4.2	7.77	0.1694	0.1054
0.78-0.76	571	571	100.0	3.78	3.9	6.91	0.1795	0.1164
$0.76-0.74$	663	663	100.0	3.59	3.8	6.36	0.1964	0.1288
$0.74-0.72$	720	720	100.0	3.51	3.1	5.23	0.2394	0.1593
$0.72-0.70$	799	799	100.0	3.35	2.7	4.59	0.2607	0.1983
$0.70-0.68$	820	886	92.6	2.80	2.5	3.81	0.2832	0.2555
0.68-0.67	2	13	15.4	0.15	1.2	0.38		2.4259
Inf - 0.67	10574	10670	99.1	4.46	9.6	14.78	0.0656	0.0484

Solution by direct methods (SHELXS-97), refinement by full-matrix least-squares on F^{2} (SHELXL-97, G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122), H atoms riding. The position of the N atom in the pyridyl group could not be located by refining the structure with C atoms in all the 6-membered rings, which indicates that the pyridyl group may be disordered over several positions in the molecule. Nevertheless, a lack of electron density in a region where the H atom of a $\mathrm{C}-\mathrm{H}$ group would be expected suggests that N 1 is the likely position of the N atom. The crystal contains a toluene molecule that is disordered about a crystallographic centre of symmetry. Disordered atoms were refined with isotropic atomic displacement parameters and half occupancy. Reflections above $4 \AA$ resolution were affected by the beamstop and removed from the final refinement cycles. $R_{1}=0.053[I>2 \sigma(I)], w R_{2}=0.152$ (all data), 381 parameters, $S=1.042$, residual electron density $+0.90 /-0.71$ e \AA^{-3} [in the vicinity of C42 ($0.57 \AA$) and C37 ($0.53 \AA$), respectively]. CCDC 914763.

Crystal structure analysis of 4

Figure S-2. Molecular structure of $\mathbf{4} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$.
Crystal data for $4 \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$: Chemical formula $\left[\mathrm{C}_{54} \mathrm{H}_{44} \mathrm{Au} \mathrm{N} \mathrm{P}_{3}\right]^{+}\left[\mathrm{F}_{6} \mathrm{Sb}\right]^{-} \cdot \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}, F_{w}=1317.45 \mathrm{~g} \mathrm{~mol}^{-1}$, colourless plate from dichloromethane/pentane, crystal size $0.010 \times 0.010 \times 0.004 \mathrm{~mm}^{3}$, crystal system triclinic, space group $P 1, a=12.0585(17), b=15.106(2), c=16.288(2) \AA$, $\alpha=63.058(2), \beta=68.541(3)$, $Y=83.121(3)^{\circ}, V=2457.9(6) \AA^{3}, T=100 \mathrm{~K}, \rho_{\mathrm{c}}=1.780 \mathrm{Mg} \mathrm{m}^{-3}, Z=2, \lambda=0.71073 \AA, \mu=3.800 \mathrm{~mm}^{-1}$, Gaussian absorption correction ($T_{\text {min }}=0.95624, T_{\text {max }}=0.98694$), scaling SADABS, Brucker AXS Mach3 Apexll diffractometer equipped with Helios multilayer X-ray optics, $1.82<\theta<23.44^{\circ}, 34062$ reflections collected, 7175 unique reflections ($R_{\text {int }}=0.0705$), 5917 reflections with $I>2 \sigma(I)$. Intensity statistics:

Resolution \#Data \#Theory \%Complete Redundancy Mean I Mean I/s R(int) Rsigma

Inf - 2.44	360	361	99.7	5.57	78.5	38.26	0.0327	0.0196
$2.44-1.93$	371	374	99.2	5.52	52.9	32.13	0.0418	0.0243
1.93-1.68	369	369	100.0	5.55	44.9	28.36	0.0451	0.0265
$1.68-1.52$	373	373	100.0	5.44	36.9	25.27	0.0518	0.0300
$1.52-1.42$	365	365	100.0	5.46	35.9	24.49	0.0532	0.0313
$1.42-1.33$	409	409	100.0	5.37	30.1	21.00	0.0609	0.0361
$1.33-1.26$	382	382	100.0	5.28	23.7	17.94	0.0772	0.0436
$1.26-1.20$	421	421	100.0	5.08	22.4	16.21	0.0798	0.0484
$1.20-1.15$	428	428	100.0	4.87	20.2	14.86	0.0929	0.0550
$1.15-1.11$	388	388	100.0	4.81	16.7	12.61	0.1043	0.0653
$1.11-1.07$	464	464	100.0	4.56	18.4	13.18	0.1039	0.0648
$1.07-1.04$	373	373	100.0	4.49	14.9	10.91	0.1257	0.0785
$1.04-1.01$	437	437	100.0	4.29	14.1	9.98	0.1286	0.0852
1.01-0.98	501	501	100.0	4.29	13.6	9.38	0.1338	0.0912
0.98-0.96	362	362	100.0	4.02	13.0	8.59	0.1466	0.0986
$0.96-0.94$	392	392	100.0	4.05	11.4	7.53	0.1597	0.1132
$0.94-0.92$	424	424	100.0	3.93	10.0	6.76	0.1749	0.1287
$0.92-0.89$	359	392	91.6	2.80	8.9	5.35	0.1843	0.1889
Inf - 0.89	7178	7215	99.5	4.72	25.2	16.46	0.0705	0.0483

Solution by direct methods (SHELXS-97), refinement by full-matrix least-squares on F^{2} (SHELXL-97, G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122), H atoms riding. The crystal appears to be twinned about (0 001) [-2 -2 5] with a rotation matrix of $\left[\begin{array}{lllll}-1 & 0 & 0 & 0-1 & 0-0.854-0.8951 .0] ~(a c c o r d i n g ~ t o ~ P L A T O N, ~ A . ~ L . ~\end{array}\right.$ Spek, Acta Cryst. 2009, D65, 148-155). The refined fractional contribution of the second component was 0.09987 (154). The crystal diffracted so poorly that the possible non-merohedral intensity data of this minor second component could not be collected. It cannot be ruled out that the reflections for which the measured intensities were significantly higher than the calculated ones based on the model, are not a result of loss of solvent from the crystal and corresponding crystallinity with retention of the gold contribution. The probable position of the N atom was determined by refining atomic displacement parameters of all atoms in the 6-membered rings as C atoms. The C atom, with the smallest atomic displacement parameter and no adjacent electron density that could be construed as an H atom, was chosen to be N . Subsequent refinement cycles with atomic displacement parameters of all ring atoms restrained to be similar with a standard uncertainty of 0.001 (252 restraints) suggested that this choice was likely, but not certain. We cannot rule out that the N atom is disordered over several pyridyl rings. Assuming that the final model is correct, the larger than unity goodness-of-fit of 1.835 at the end of refinement suggests that the weights attributed to the measured intensities were underestimated. $R_{1}=$ $0.054\left[I>2 \sigma(\Lambda]\right.$, $w R_{2}=0.103$ (all data), 620 parameters, $S=1.835$, residual electron density $+2.37 /-$ 1.22 e Å-3 [in the vicinity of Au1 ($1.07 \AA$ Å and $0.74 \AA$ Å, respectively)]. CCDC 914764.

Crystal structure analysis of 5

Figure S-3. Molecular structure of $5 \cdot \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O} \cdot 1.26\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
Crystal data for 5. $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O} \cdot 1.26\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: Chemical formula $\left[\mathrm{C}_{54} \mathrm{H}_{44} \mathrm{Au} \mathrm{Cl} \mathrm{Cu} \mathrm{N} \mathrm{P}_{3}\right]^{+}\left[\mathrm{F}_{6} \mathrm{Sb}^{-} \cdot \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}\right.$. $1.26\left(\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}\right), F_{w}=1512.60 \mathrm{~g} \mathrm{~mol}^{-1}$, yellow needle from dichloro-methane/diethylether/hexane, crystal size $0.100 \times 0.020 \times 0.010 \mathrm{~mm}^{3}$, crystal system monoclinic, space group $C 2 / \mathrm{c}, a=31.703(8), b=$ 11.136(3), $c=38.620(11) \AA, \beta=114.233(4)^{\circ}, V=12433(6) \AA^{3}, T=100 \mathrm{~K}, \rho_{\mathrm{c}}=1.616 \mathrm{Mg} \mathrm{m}^{-3}, Z=8, \lambda=$ $0.71073 \AA, \mu=3.410 \mathrm{~mm}^{-1}$, Gaussian absorption correction ($T_{\min }=0.73288, T_{\max }=0.96823$), scaling SADABS, Brucker AXS Mach3 ApexII diffractometer equipped with Helios multilayer X-ray optics, 2.42 < $\theta<27.88^{\circ}, 94800$ reflections collected, 14815 unique reflections ($R_{\text {int }}=0.0946$), 12024 reflections with $/$ $>2 \sigma(\Lambda)$. Intensity statistics:

Resolution \#Data \#Theory \%Complete Redundancy Mean I Mean I/s R(int) Rsigma

Inf - 2.07	844	852	99.1	7.56	84.4	26.19	0.0522	0.0309
$2.07-1.63$	843	844	99.9	8.05	52.4	23.84	0.0567	0.0326
1.63-1.42	850	850	100.0	8.14	45.8	22.77	0.0617	0.0336
$1.42-1.28$	917	917	100.0	7.82	35.3	20.86	0.0708	0.0376
$1.28-1.18$	931	931	100.0	7.38	25.8	17.83	0.0883	0.0444
$1.18-1.11$	873	873	100.0	6.86	24.6	16.32	0.0930	0.0500
$1.11-1.05$	929	929	100.0	6.60	20.0	14.47	0.1138	0.0589
$1.05-1.00$	953	953	100.0	6.31	17.6	12.67	0.1237	0.0674
1.00-0.96	950	950	100.0	6.00	16.6	11.57	0.1327	0.0751
$0.96-0.92$	1100	1100	100.0	5.75	14.2	10.56	0.1472	0.0866
$0.92-0.89$	929	929	100.0	5.63	12.8	9.39	0.1694	0.0978
0.89-0.86	1078	1078	100.0	5.33	11.2	8.52	0.1745	0.1119
0.86-0.84	849	849	100.0	5.20	9.8	7.42	0.1995	0.1305
$0.84-0.82$	878	878	100.0	5.10	9.2	7.23	0.2180	0.1412
$0.82-0.80$	981	981	100.0	4.85	8.5	6.38	0.2291	0.1614
$0.80-0.78$	1111	1111	100.0	4.84	7.5	5.79	0.2490	0.1787
$0.78-0.76$	1222	1223	99.9	4.55	6.6	4.94	0.2926	0.2166
$0.76-0.74$	595	812	73.3	1.97	5.7	3.25	0.2989	0.3080
Inf - 0.74	16833	17060	98.7	5.95	21.8	12.53	0.0947	0.0638

Solution by direct methods (SHELXS-97), refinement by full-matrix least-squares on F^{2} (SHELXL-97, G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122), H atoms riding. The Cu and Cl atoms in the cation are each disordered over two positions with refined occupancy of 0.802(7):0.198(7). Bond distances, angles and vectors indicate that in the major component (80%), Cu1A is bonded to N 1 of the pyridyl group with a Cu1A-N1 bond distance of $2.267(6) \AA$. As a result, the Cl atom, Cl 1 A , which bonded to Cu 1 A , is bent away from N1 in the plane of Au1, Cu1A, N1, such that the C1-Cu1A-Cl1A bond angle is 148.3(2) ${ }^{\circ}$. Bond angles around the Cu atom of the minor component indicate that Cu 1 B undergoes interaction with an N atom of a minor pyridyl ring component near to the position of C20. Due to the partial occupancy of solute and the presence of Au, Cu and Cl in the structure, it was not possible to locate the exact position of this pyridyl group, but it is probably bonded to P2. In addition, the large anisotropic atomic displacement parameter of CI1B indicate that the partial pyridyl group is itself disordered. The crystal contains both solute ether and dichloromethane. Both dichloromethane molecules are present with refined partial occupancy of $62.9(4) \%$. Several low angle reflections were shaded by the beamstop and were not used in the final refinement cycles. Assuming that the final model is correct, the larger than unity goodness-of-fit of 1.319 at the end of refinement suggests that the weights attributed to the measured intensities were slightly underestimated. $R_{1}=0.052[I>2 \sigma(\Lambda)], \mathrm{w} R_{2}=0.120$ (all data), 734 parameters, $S=1.319$, residual electron density $+1.88 /-2.68$ e \AA^{-3} [in the vicinity of Au1 ($0.91 \AA$ and 0.05 Å, respectively)]. CCDC 914765.

Crystal structure analysis of 6

Figure S-4. Molecular structure of $6 \cdot 2\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
Crystal data for 6.2($\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: Chemical formula $\left[\mathrm{C}_{54} \mathrm{H}_{44} \mathrm{Au}_{2} \mathrm{Cl} \mathrm{N} \mathrm{P}_{3}\right]^{+}\left[\mathrm{F}_{6} \mathrm{Sb}\right]^{-} \cdot 2\left(\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}\right), F_{w}=$ $1634.80 \mathrm{~g} \mathrm{~mol}^{-1}$, colourless plate from dichloro-methane/diethylether, crystal size $0.036 \times 0.036 \times 0.010$ mm^{3}, crystal system triclinic, space group P1, $a=11.0964(17), b=16.611(3), c=17.876(3) \AA, \alpha=$ $63.214(2), \beta=74.097(3), \gamma=71.051(3)^{\circ}, V=2750.0(7) \AA^{3}, T=100 \mathrm{~K}, \rho_{\mathrm{c}}=1.974 \mathrm{Mg} \mathrm{m}^{-3}, Z=2, \lambda=$ $0.71073 \AA, \mu=6.199 \mathrm{~mm}^{-1}$, Gaussian absorption correction ($T_{\text {min }}=0.77426, T_{\text {max }}=0.94267$), scaling SADABS, Brucker AXS Mach3 ApexII diffractometer equipped with Helios multilayer X-ray optics, $2.18<$ $\theta<26.78^{\circ}, 58526$ reflections collected, 11609 unique reflections ($R_{\text {int }}=0.0799$), 8203 reflections with $/>$ $2 \sigma(I)$ Intensity statistics:

Resolution \#Data \#Theory \%Complete Redundancy Mean I Mean I/s R(int) Rsigma

Inf - 2.15	584	586	99.7	6.34	56.0	34.91	0.0289	0.0221
$2.15-1.72$	583	583	100.0	6.27	30.3	28.06	0.0374	0.0258
$1.72-1.49$	614	614	100.0	6.20	26.3	25.79	0.0443	0.0281
1.49-1.35	614	614	100.0	6.13	21.7	23.01	0.0514	0.0312
$1.35-1.25$	620	620	100.0	5.99	15.9	19.20	0.0669	0.0382
$1.25-1.18$	594	594	100.0	5.78	12.9	16.30	0.0791	0.0461
$1.18-1.12$	588	588	100.0	5.52	10.3	13.16	0.0963	0.0569
$1.12-1.07$	641	641	100.0	5.30	10.6	13.04	0.1004	0.0601
$1.07-1.03$	582	582	100.0	5.12	8.8	10.75	0.1174	0.0725
1.03-0.99	695	695	100.0	4.99	8.1	9.60	0.1319	0.0818
$0.99-0.96$	600	600	100.0	4.75	7.8	9.14	0.1395	0.0888
0.96-0.93	673	673	100.0	4.62	6.4	7.59	0.1648	0.1100
$0.93-0.90$	795	795	100.0	4.46	5.2	6.08	0.1962	0.1374
0.90-0.87	868	868	100.0	4.28	4.6	5.24	0.2198	0.1633
$0.87-0.85$	662	662	100.0	4.27	3.6	4.13	0.2832	0.2073
$0.85-0.83$	737	737	100.0	4.10	3.5	3.93	0.2782	0.2280
0.83-0.81	795	795	100.0	3.95	2.9	3.19	0.3276	0.2842
0.81-0.79	368	474	77.6	2.43	2.8	2.78	0.3292	0.3520
Inf - 0.79	11613	11721	99.1	4.99	12.6	12.61	0.0762	0.0585

Solution by direct methods (SHELXS-97), refinement by full-matrix least-squares on F^{2} (SHELXL-97, G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122), H atoms riding. One of the phenyl/pyridyl groups attached to P was rotationally disordered over two positions about C19. The location of the single 2pyridyl group attached to P could not be determined with certainty. However, refinement of all the sixmembered ring atoms as C resulted in smaller than average C atomic displacement parameters for C 01 and C20A, indicating that these positions are the preferential locations of N. Position C20A and half of position C01 were refined as N atoms (N1A and N1B, respectively). Distances of these two N atoms to the Au atom Au2 (N1A...Au2 3.31(1) and N1B...Au2 3.41(1) Å) indicate that the 2-pyridyl group is not bonded to Au2. This is confirmed by the almost linear C1-Au2-Cl1 angle of 178.8(2). The crystal contains two solute dichlormethane molecules. The atomic displacement parameter of one Cl atom (Cl4) is somewhat anisotropic. Attempts to model the disorder of this atom by two atoms with half occupancy were unsuccessful, since the close proximity of a centre of symmetry, and associated symmetry related molecule, prevented an otherwise chemically sensible interpretation of the disorder. Several low angle reflections were shaded by the beamstop and were not included in the final refinement cycles. $R_{1}=$ $0.051[I>2 \sigma(I)], w R_{2}=0.139$ (all data), 648 parameters, $S=1.270$, residual electron density $+3.23 /-$ 1.98 e \AA^{-3} [in the vicinity of $\mathrm{Au} 2(0.92 \AA$) and Cl4 ($0.74 \AA$), respectively)]. CCDC 914766.

Crystal structure analysis of 9

Figure S-5. Molecular structure of $9 \cdot \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$.
Crystal data for 9. $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$: Chemical formula [$\left.\mathrm{C}_{30} \mathrm{H}_{51} \mathrm{Au}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{P}\right] \cdot\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}\right), F_{w}=1009.65 \mathrm{~g} \mathrm{~mol}^{-1}$, colourless prism from dichloromethane/diethylether, crystal size $0.110 \times 0.100 \times 0.060 \mathrm{~mm}^{3}$, crystal system monoclinic, space group $P 2_{1} / \mathrm{n}, a=12.2004(15), b=18.010(2), c=17.840(2) \AA, \beta=96.719(2)^{\circ}$, $V=3893.2(8) \AA^{3}, T=100 \mathrm{~K}, \rho_{\mathrm{c}}=1.723 \mathrm{Mg} \mathrm{m}^{-3}, Z=4, \lambda=0.71073 \AA, \mu=7.733 \mathrm{~mm}^{-1}$, Gaussian absorption correction ($T_{\min }=0.35063, T_{\max }=0.67230$), scaling SADABS, Brucker AXS Mach3 Apexll diffractometer equipped with Helios multilayer X-ray optics, $1.61<\theta<31.02^{\circ}$, 112428 reflections collected, 12388 unique reflections ($R_{\text {int }}=0.0279$), 11258 reflections with $I>2 \sigma(I)$. Intensity statistics:

Resolution \#Data \#Theory \%Complete Redundancy Mean I Mean I/s Rmerge Rsigma

Inf - 2.88	192	195	98.5	11.00	133.0	107.25	0.0178	0.0074
$2.88-1.90$	452	452	100.0	12.05	88.5	104.04	0.0167	0.0071
$1.90-1.50$	640	640	100.0	12.14	73.2	98.63	0.0179	0.0074
$1.50-1.31$	636	636	100.0	11.95	49.5	85.15	0.0212	0.0083
$1.31-1.18$	685	685	100.0	11.55	43.0	77.13	0.0224	0.0092
$1.18-1.10$	605	605	100.0	10.90	41.2	71.55	0.0240	0.0097
$1.10-1.03$	690	690	100.0	10.31	34.0	62.01	0.0267	0.0109
$1.03-0.98$	616	616	100.0	9.74	29.2	56.13	0.0287	0.0124
$0.98-0.93$	760	760	100.0	9.39	25.6	50.59	0.0314	0.0136
$0.93-0.90$	532	532	100.0	8.89	24.4	47.99	0.0337	0.0147
$0.90-0.87$	603	603	100.0	8.77	21.2	43.00	0.0380	0.0163
$0.87-0.84$	721	721	100.0	8.35	19.4	40.25	0.0391	0.0179
$0.84-0.81$	796	796	100.0	8.09	16.6	34.55	0.0466	0.0206
$0.81-0.79$	628	628	100.0	7.79	16.0	32.99	0.0474	0.0220
$0.79-0.77$	666	666	100.0	7.60	13.0	27.66	0.0565	0.0259
$0.77-0.76$	369	369	100.0	7.38	13.9	27.77	0.0516	0.0255
$0.76-0.74$	791	791	100.0	7.16	12.6	25.91	0.0590	0.0283
$0.74-0.72$	875	875	100.0	7.00	12.8	24.82	0.0573	0.0291
$0.72-0.71$	485	485	100.0	6.58	11.4	22.83	0.0666	0.0335
$0.71-0.70$	510	510	100.0	6.68	10.3	21.42	0.0724	0.0361
$0.70-0.69$	503	546	92.1	5.45	11.2	20.29	0.0685	0.0390
--1								

Solution by direct methods (SHELXS-97), refinement by full-matrix least-squares on F^{2} (SHELXL-97, G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122), H atoms riding. $R_{1}=0.0148[I>2 \sigma(\Lambda)], \mathrm{w} R_{2}=0.0351$ (all data), 395 parameters, $S=1.029$, residual electron density $+1.93 /-1.22$ e \AA^{-3} [in the vicinity of Au2 ($0.68 \AA \AA$) and $\mathrm{Cl} 2(0.73 \AA$), respectively)]. CCDC 914767.

Crystal structure analysis of 10

Figure S-6. Molecular structure of 10.
Crystal data for 10: Chemical formula [$\left.\mathrm{C}_{38} \mathrm{H}_{63} \mathrm{Au} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{PRh}\right], F_{w}=949.65 \mathrm{~g} \mathrm{~mol}^{-1}$, yellow needle from dichloromethane/diethylether, crystal size $0.190 \times 0.120 \times 0.040 \mathrm{~mm}^{3}$, crystal system monoclinic, space group $C 2 / \mathrm{c}, a=24.580(3), b=26.348(4), c=15.250(2) \AA, \beta=126.810(2)^{\circ}, V=7908(2) \AA^{3}, T=100 \mathrm{~K}, \rho_{\mathrm{c}}$ $=1.595 \mathrm{Mg} \mathrm{m}^{-3}, Z=8, \lambda=0.71073 \AA, \mu=4.327 \mathrm{~mm}^{-1}$, Gaussian absorption correction ($T_{\text {min }}=0.18962$, $T_{\max }=0.76362$), scaling SADABS, Brucker AXS Mach3 Apexll diffractometer equipped with Helios multilayer X-ray optics, $2.27<\theta<30.51^{\circ}$, 110186 reflections collected, 12070 unique reflections ($R_{\text {int }}=$ $0.0505), 10548$ reflections with $I>2 \sigma(\Lambda)$. Intensity statistics:

Resolution \#Data \#Theory \%Complete Redundancy Mean I Mean I/s Rmerge Rsigma

Inf - -2.47	296	297	99.7	11.69	56.8	50.25	0.0387	0.0173
$2.47-1.63$	711	711	100.0	12.03	38.8	46.92	0.0378	0.0166
$1.63-1.30$	948	948	100.0	11.97	24.9	41.83	0.0386	0.0175
$1.30-1.13$	1016	1016	100.0	11.25	19.6	36.70	0.0427	0.0193
$1.13-1.02$	1051	1051	100.0	10.31	16.4	32.38	0.0460	0.0218
$1.02-0.95$	930	930	100.0	9.57	13.5	28.95	0.0503	0.0242
$0.95-0.89$	1085	1085	100.0	8.93	11.4	25.22	0.0573	0.0275
$0.89-0.85$	862	862	100.0	8.55	9.5	22.33	0.0639	0.0310
$0.85-0.81$	1089	1089	100.0	8.09	8.4	20.11	0.0716	0.0348
$0.81-0.78$	943	943	100.0	7.67	7.2	17.62	0.0780	0.0399
$0.78-0.75$	1094	1094	100.0	7.39	7.3	17.66	0.0838	0.0416
$0.75-0.73$	833	833	100.0	7.06	6.3	15.18	0.0962	0.0480
$0.73-0.71$	956	956	100.0	6.83	6.0	14.57	0.0988	0.0509
$0.71-0.69$	1047	1047	100.0	6.57	5.4	12.82	0.1109	0.0572
$0.69-0.67$	1178	1178	100.0	6.29	4.7	11.53	0.1265	0.0663
$0.67-0.66$	641	641	100.0	6.05	4.0	10.05	0.1463	0.0773
$0.66-0.64$	1415	1415	100.0	5.86	3.9	9.80	0.1489	0.0813
$0.64-0.63$	758	758	100.0	5.65	3.4	8.21	0.1724	0.0963
$0.63-0.62$	843	843	100.0	5.44	3.2	7.97	0.1829	0.1036
$0.62-0.61$	854	856	99.8	5.23	3.0	7.18	0.1921	0.1156
$0.61-0.59$	980	1554	63.1	1.64	2.7	4.49	0.2052	0.1986
---1								

Solution by direct methods (SHELXS-97), refinement by full-matrix least-squares on F^{2} (SHELXL-97, G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122), H atoms riding. Reflections above 9 Å resolution were shaded by the beamstop and removed from the final least-squares refinement cycles. $R_{1}=0.020[I>$ $2 \sigma(\Lambda)$], w $R_{2}=0.049$ (all data), 420 parameters, $S=1.228$, residual electron density $+1.56 /-1.04 \mathrm{e} \AA^{-3}[$ in the vicinity of Rh2 ($0.92 \AA$ Å) and Au1 ($0.76 \AA$ Å), respectively)]. CCDC 914768.

[^0]: ${ }^{1}$ Y. van den Winkel, H. M. M. Bastiaans, F. Bickelhaupt, J. Organomet. Chem. 1991, 405,183.
 ${ }^{2}$ R. Weiss, K. G. Wagner, C. Priesner, J. Macheleid, J. Am. Chem. Soc. 1985, 107, 4491.

