Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

Table of contents	
General	S-2
Synthesis and Characterization of Compounds 2-10	S-6
Single crystal X-ray structure analyses	S-7

General: All reactions were carried out in flame-dried glassware under Ar. All the solvents were purified by distillation over the drying agents indicated and were transferred under Ar. CH_2CI_2 (CaH₂), *n*-pentane, toluene, benzene (Na/K). IR: Nicolet FT-7199 spectrometer, wavenumbers in cm⁻¹. MS (EI): Finnigan MAT 8200 (70 eV), ESIMS: Finnigan MAT 95, accurate mass determinations: Bruker APEX III FT-MS (7 T magnet). NMR: Spectra were recorded on a Bruker AV 400 or a AV 600 spectrometer in the solvents indicated; ¹H and ¹³C chemical shifts (δ) are given in ppm relative to TMS, coupling constants (*J*) in Hz. The solvent signals were used as references and the chemical shifts converted to the TMS scale. All commercially available compounds (Acros, ABCR, Fluka, Lancaster, Alfa Aesar, Aldrich) were used as received unless stated otherwise. 2,4,6-Tris(isopropyl)phenylphosphine ¹ and 1-chloro-2,3-(diisopropylamino)cyclopropenium tetrafluoroborate² were prepared according to literature procedures.

Compound 2: A mixture containing (PhO)₃PO (25.4 g, previously melted and dried in vacuum at 60 °C for 3 h), bromide 1 (7.4 g, 16.97 mmol) and 2-pyridyldiphenylphosphine (4.49 g, Ph_2 Ph₃P 17.05 mmol) was stirred overnight at 120 °C. Once cooled to rt, toluene (100 mL) 2Br⁻ Ν was added and the suspension stirred for three hours. After filtration of the organic solvents, the remaining residue was washed with toluene three times, re-dissolved in MeOH (30 mL) and precipitated with Et₂O (40 mL). Finally, the light grey solid thus obtained was dried in vacuum affording the desired product (2.84 g, 24%). ¹H-NMR (400 MHz, CD_2Cl_2): $\delta = 8.22-8.07$ (m, 11H), 8.02-7.91 (m, 4H), 7.66-7.57 (m, 5H), 7.50-7.46 (m, 1H), 7.46-7.36 ppm (m, 10H); 13 C-NMR (100 MHz, CD₂Cl₂): δ = 150.7 (d, J = 20 Hz), 142.3 (d, J = 119 Hz), 138.4 (d, J = 11 Hz), 135.3 (d, J = 3 Hz), 135.2 (d, J = 11 Hz), 135.1, 134.7 (d, J = 11 Hz), 134.2 (d, J = 26 Hz), 130.1 (d, J = 14 Hz), 130.0 (d, J = 13 Hz), 129.0 (d, J = 12 Hz) 3 Hz), 118.0 (d, J = 89 Hz), 117.1 (d, J = 89 Hz), 16.8 ppm (t, J = 47 Hz); ³¹P-NMR (162 MHz, CD₂Cl₂): δ = 21.5 (d, J = 18 Hz), 16.3 ppm (d, J = 18 Hz); MS (ESI+): m/z (%): 538.3 (100); HRMS (ESI+): m/z: calcd. for C₃₆H₃₀NP₂: 538.1848; found: 538.1854.

Compound 3: NH₃ (45 mL) was condensed in a 100 mL two neck round-bottom flask containing Ph_2 compound **2** (1.14 g, 1.63 mmol) and NaNH₂ (410 mg, 10.51 mmol), and the mixture stirred for 7 h at -35 °C. After that, the NH₃ was allowed to slowly evaporate before toluene (15 mL) was added to the reaction mixture. The yellow organic phase was

filtered and the remaining solid washed at rt with toluene (2x10 mL). Evaporation of the combined organic phases afforded the desired compound as a yellow solid (770 mg, 88 %). ¹H-NMR (600 MHz, d₈-THF): δ = 8.45 (m, 1H), 8.38 (m, 1H), 7.64 (m, 4H), 7.63 (m, 6H), 7.62 (m, 1H), 7.26 (m, 3H), 7.19 (m,

Ph₃P

¹ Y. van den Winkel, H. M. M. Bastiaans, F. Bickelhaupt, J. Organomet. Chem. **1991**, 405,183.

² R. Weiss, K. G. Wagner, C. Priesner, J. Macheleid, J. Am. Chem. Soc. **1985**, 107, 4491.

2H), 7.18 (m, 6H), 7.16 (m, 1H), 7.10 ppm (m, 4H); ¹³C-NMR (150 MHz, d₈-THF): δ = 161.7 (dd, *J* = 119, 10 Hz), 149.4 (d, *J* = 18 Hz), 138.4 (dd, *J* = 89, 7 Hz), 138.2 (dd, *J* = 88, 6 Hz), 135.7 (d, *J* = 9 Hz), 133.2 (d, *J* = 10 Hz), 133.0 (d, *J* = 10 Hz), 129.9 (d, *J* = 3 Hz), 129.6 (d, *J* = 3 Hz), 129.1 (d, *J* = 22 Hz), 128.2 (d, *J* = 11 Hz), 127.8 (d, *J* = 11 Hz), 123.8 (d, *J* = 3 Hz), 11.8 ppm (dd, *J* = 122, 119 Hz).

¹H-NMR (600 MHz, C₆D₆): δ = 8.64 (m, 1H), 8.31 (m, 1H), 8.04 (m, 4H), 7.90 (m, 6H), 7.02 (m, 1H), 7.00 (m, 9H), 6.99 (m, 6H); 6.46 ppm (m, 1H); ¹³C-NMR (150 MHz, C₆D₆): δ = 161.3 (dd, *J* = 119, 10 Hz), 148.9 (d, *J* = 18 Hz), 137.9 (dd, *J* = 89, 7 Hz), 137.6 (dd, *J* = 88, 6 Hz), 134.9 (d, *J* = 9 Hz), 132.9 (d, *J* = 10 Hz), 132.6 (d, *J* = 10 Hz), 129.4 (d, *J* = 2 Hz), 129.3 (d, *J* = 3 Hz), 128.7 (d, *J* = 22 Hz), 127.8 (d, *J* = 11 Hz), 127.6 (d, *J* = 11 Hz), 122.9 (d, *J* = 3 Hz), 12.3 ppm (dd, *J* = 118, 115 Hz); ³¹P-NMR (162 MHz, C₆D₆): δ = -2.14 (d, *J* = 85 Hz), -5.55 ppm (d, *J* = 85 Hz); IR (neat): v \Box = 3050, 1571, 1476, 1433, 1298, 1270, 1173, 1097, 1026, 970, 741, 691 cm⁻¹; MS (EI): *m/z* (%): 536 (100), 459 (43), 352 (12), 262 (34), 183 (33), 165 (21); HRMS (EI): m/z calcd. for C₃₆H₂₉NP₂: 537.1775; found: 537.1770; elemental analysis calcd. (%) for C₃₆H₂₉NP₂: C 80.43, H 5.44, N 2.61; found: C 79.76, H 5.74, N 1.92.

Compound 4: [Ph₃PAuCl] (70 mg, 0.142 mmol) was added to a precooled solution of compound Ph_2 Ph_2 Ph_2 Ph_2 Ph_2 Ph_2 Ph_3 SbF_6^- **3** (75 mg, 0.140 mmol) in THF (3 mL) at 0 °C and the resulting mixture stirred for 1 h at the same temperature. Subsequently, NaSbF₆ (36.3 mg, 0.140 mmol) was added and the suspension stirred for an additional hour. Evaporation of the volatile materials afforded a white solid that was re-dissolved in CH₂Cl₂ (2 mL) and filtered. Concentration of the organic phase in vacuum afforded the desired product as a

white solid (168 mg, 97 %). ¹H-NMR (600 MHz, CD_2Cl_2): $\delta = 8.44$ (m, 1H), 7.80 (m, 4H), 7.71 (m, 6H), 7.50-7.42 (m, 10H), 7.32 (m, 6H), 7.30 (m, 4H), 7.26 (m, 6H), 7.22 (m 1H), 7.01 ppm (m, 6H); ¹³C-NMR (150 MHz, CD_2Cl_2): $\delta = 156.0$ (dt, J = 114, 3 Hz), 150.4 (d, J = 18 Hz), 136.4 (d, J = 9 Hz), 134.1 (d, J = 14 Hz), 133.6 (d, J = 10 Hz), 133.3 (d, J = 10 Hz), 132.2 (d, J = 3 Hz), 132.1 (dd, J = 91, 4 Hz), 132.0 (d, J = 3 Hz), 131.8 (d, J = 2 Hz), 131.7 (dd, J = 92, 5 Hz), 130.0 (d, J = 55 Hz), 129.3 (d, J = 11 Hz), 128.8 (d, J = 12 Hz), 128.6 (d, J = 23 Hz), 125.4 (d, J = 3 Hz), 24.5 ppm (dt, J = 86, 84 Hz); ³¹P-NMR (162 MHz, CD_2Cl_2): $\delta = 41.28$ (t, J = 6 Hz), 19.70 (dd, J = 30, 7 Hz), 15.03 ppm (dd, J = 30, 7 Hz); IR (neat): v = 3059, 1571, 1481, 1435, 1312, 1184, 1127, 1099, 1068, 1027, 998, 844, 744, 691, 656 cm⁻¹; MS (ESI+): m/z (%): 996.3 (100); HRMS (ESI+): m/z calcd. for $C_{54}H_{44}AuNP_3$: 996.2347; found: 996.2347; elemental analysis calcd. (%) for $C_{54}H_{44}AuNP_3$ ·SbF₆: C 52.62, H 3.60, N 1.14; found: C 50.16, H 3.29, N 0.92.

Compound 5: CuCl (4.8 mg, 0.0485 mmol) was added to a solution of 4 (48 mg, 0.0390 mmol) in

CH₂Cl₂ at 0 °C and the mixture stirred at this temperature overnight. Removal of the solvent in vacuum provided the desired compound as an orange solid (49.3 mg, 95 %). ¹H-NMR (600 MHz, CD₂Cl₂): δ = 9.06 (m, 1H), 7.97 (dd, *J* = 12, 8 Hz, 2H), 7.85 (tdt, *J* = 8, 5, 2 Hz, 1H), 7.75 (m, 6H), 7.67 (m, 1H), 7.63 (m, 1H), 7.54 (m, 3H), 7.48 (m, 1H), 7.45 (m, 3H), 7.40 (m, 6H), 7.30 (m, 2H), 7.25 (m, 6H),

7.24 (m, 2H), 7.16 (ddq, J = 8, 5, 1 Hz, 1H), 7.11 (m, 6H), 6.94 ppm (m, 2H); ¹³C-NMR (150 MHz, CD_2CI_2): $\delta = 152.8$ (dd, J = 130, 15 Hz), 150.2 (d, J = 16 Hz), 138.9 (d, J = 9 Hz), 134.1, 134.0 (d, J = 14Hz), 133.89 (d, J = 10 Hz), 133.83, 133.5 (d, J = 10 Hz), 133.2 (d, J = 10 Hz), 133.1 (d, J = 3 Hz), 132.2 (d, *J* = 2 Hz), 129.9 (d, *J* = 12 Hz), 129.8 (d, *J* = 12 Hz), 129.6 (d, *J* = 12 Hz), 129.4 (d, *J* = 24 Hz), 129.2 (d, J = 12 Hz), 128.9 (d, J = 58 Hz), 128.5 (dd, J = 89, 5 Hz), 128.0 (d, J = 2 Hz), 126.4 (dd, J = 76, 3 Hz),124.2 (d, J = 79 Hz), 17.5 ppm (ddd, J = 68, 58, 52 Hz); ³¹P-NMR (122 MHz, CD₂Cl₂): $\delta = 39.7$ (m), 26.2 ppm (ddd, J = 49, 23, 9 Hz); IR (neat): v = 3050, 2956, 1575, 1481, 1435, 1311, 1262, 1185, 1161, 1262, 1185,1096, 991, 741, 689, 650 cm⁻¹; MS (ESI+): m/z (%): 1094.2 (60); HRMS (ESI+): m/z: calcd. for $C_{54}H_{44}AuClCuNP_3$: 1094.1331; found: 1094.1354; elemental analysis calcd. (%) for C₅₄H₄₄AuClCuNP_{3*}SbF₆: C 48.71, H 3.33, N 1.05; found: C 47.01, H 3.47, N 0.95.

Compound 6: [(Me₂S)AuCl] (13.5 mg, 0.0458 mmol) was added to a cooled (0 °C) solution of 4 (54 mg, 0.0438 mmol) in CH₂Cl₂ (1 mL) and the mixture was stirred 2 h at this Ph_2 Ph₃P temperature. Evaporation in vacuum of all volatile materials afforded 6 as a white solid (54.5 mg, 85 %). Crystals suitable for X-ray diffraction analysis were grown Ph₃P CI by slow diffusion of pentane in CH_2CI_2 solutions of the product. ¹H-NMR (600 MHz, SbF₆ 6 CD_2CI_2 : $\delta = 8.05$ (m, 1H), 7.99 (m, 2H), 7.89 (m, 6H), 7.80 (m, 2H), 7.75 (m, 1H), 7.59 (m, 3H), 7.58 (m, 1H), 7.52 (m 1H), 7.47 (m, 3H), 7.46 (m, 6H), 7.41 (m, 1H), 7.34 (m, 1H), 7.32 (m, 2H), 7.27 (m, 6H), 7.19 (m, 6H), 7.15 ppm (m, 2H); ¹³C-NMR (150 MHz, CD₂Cl₂): δ = 152.0 (dt, J = 117, 3 Hz), 150.2 (d, J = 19 Hz), 138.1 (d, J = 9 Hz), 134.5 (d, J = 10 Hz), 134.3 (d, J = 10 Hz), 134.12 (d, J = 14 Hz), 134.11 (d, J = 10 Hz), 133.9 (d, J = 3 Hz), 133.6 (d, J = 3 Hz), 133.3 (d, J = 3 Hz), 132.5 (d, J = 2 Hz), 129.82 (d, J = 12 Hz), 129.81 (d, J = 23 Hz), 129.52 (d, J = 12 Hz), 129.49 (d, J = 12 Hz), 129.1 (d, J = 12 Hz), 129.0 (d, J = 58 Hz), 127.3 (dd, J = 89, 3 Hz), 127.2 (d, J = 3 Hz), 126.5 (dd, J = 89, 6 Hz), 125.4, (d, J = 87 Hz), 14.2 ppm (ddd, J = 66, 42, 40 Hz); ³¹P-NMR (162 MHz, CD₂Cl₂): $\delta = 35.4$ (m), 27.5 (m), 21.9 ppm (t , J = 7.1 Hz); IR (neat): v = 3057, 2963, 1586, 1572, 1481, 1435, 1311, 1260, 1187, 1094, 1024, 998, 944, 798, 740, 711, 689 cm⁻¹; MS (ESI+): m/z (%): 1228.3 (100); HRMS (ESI+): m/z: calcd. for C₅₄H₄₄Au₂CINP₃: 1228.1701; found: 1228.1695.

Compound 7: 2,4,6-Tris(isopropyl)phenylphosphine (1.63 g, 6.90 mmol) was added to a mixture

of chlorocyclopropenium salt (1.24 g, 3.45 mmol) in bis(2-methoxyethyl)ether (15 mL) and the resulting mixture was heated at 135 °C for 24 hours. After cooling to room temperature, the solvent was removed in vacuum at 40°C, the residue dissolved in dichoromethane (20 mL) and washed with a saturated solution of NaBF₄ (3 × 15 mL). Once dried over MgSO₄, the organic phase was

concentrated and the residue purified by flash column chromatography (1:9, acetone : dichloromethane), affording the desired compound as a white solid (1.20g, 62%). ¹H NMR (400 MHz, CDCl₃) δ = 1.10 (dd, *J* = 14.0, 6.8 Hz, 12H), 1.19 (dd, *J* = 13.4, 6.8 Hz, 12H), 1.20 (d, *J* = 6.5 Hz, 6H), 1.32 (dd, *J* = 6.6, 2.5 Hz, 12H), 2.87 (m, 1H), 3.44 (m, 2H), 3.57 (m, 2H), 4.04 (m, 2H), 5.47 (d, *J* = 238 Hz, 1H), 7.07 (d, *J* = 2.8

iPr

*i*Pr

Hz, 2H); ³¹P NMR (162 MHz, CDCl₃) δ = -100.80 ppm. ¹³C NMR (100 MHz, CDCl₃) δ = 21.1, 21.3 (d, *J* = 4.9 Hz), 22.0, 23.7 (d, *J* = 3.8 Hz), 24.0 (d, *J* = 20.9 Hz), 33.5 (d, *J* = 14.5 Hz), 34.5, 51.2, 53.9, 106.9, 119.3, 122.4, 136.9, 153.6, 154.7 ppm (d, *J* = 13.6 Hz). IR (neat) v \Box = 688, 882, 1032, 1047, 1152, 1357, 1459, 1542, 1711, 1876, 2955 cm⁻¹; HRMS calcd. for C₃₀H₅₂N₂P⁺: 471.386759; found: 471.386263.

Compound 8: KHMDS (46.1 mg, 0.231 mmol) was added to a cooled (-80 °C) suspension of **7** (129.0 mg, 0.231 mmol) in dry toluene (15 mL). The resulting mixture was allowed to reach rt and stirred for additional 2 h. The suspension thus formed was filtered under argon atmosphere and the organic phase concentrated in vacuum. The desired phosphinidene is stable at room temperature only for a few hours. ¹H NMR (400 MHz, d₈-THF) δ = 0.92 (d, *J* = 6.6 Hz, 12H), 1.16 (dd, *J* = 31.7, 7.0 Hz, 12H), 1.23 (d, *J* = 6.8 Hz, 6H), 1.35 (d, *J* = 6.6 Hz, 12H), 2.81 (m, 1H), 3,16 (m,

2H), 3.86 (m, 2H), 4.36 (m, 2H), 6.91 ppm (d, J = 1.4 Hz, 2H); ¹³C NMR (100 MHz, CD₂Cl₂) $\delta = 23.4$ (d, J = 7.2 Hz), 23.7, 24.6, 25.5 (d, J = 1.8 Hz), 33.6 (d, J = 10.4 Hz), 35.0, 49.4, 124.6, 128.4, 129.3, 147.2, 155.0 (d, J = 6.6 Hz) ppm. ³¹P NMR (162 MHz, d₈-THF) $\delta = -83.33$ ppm; HRMS calcd. for C₃₀H₅₂N₂P⁺: 470.379141; found: 470.378989.

Compound 9: A solution of **8** in toluene was prepared from **7** (84.0 mg, 0.150 mmol) and iPr, iPr,

1.16 (d, J = 6.9 Hz, 6H), 1.20 (m(br), 12H) 1.23 (d, J = 6.9 Hz, 12H), 2.79 (m, 1H), 3.81 (m, 2H), 3.90 (m, 2H), 4.28 (m, 2H), 7.01 ppm (d, J = 4.3 Hz, 2H). ³¹P NMR (162 MHz, CD_2CI_2) $\delta = -54.00$ ppm. ¹³C NMR (100 MHz, CD_2CI_2) $\delta = 20.7$, 21.2, 22.7, 23.5, 33.0, 33.1, 33.5, 110.8 (d, J = 9.0 Hz), 122.5, 122.8, 122.9, 123.0, 133.8, 150.8, 151.7 ppm (d, J = 9.2 Hz); IR (neat) $v \Box = 679$, 894, 1031, 1142, 1358, 1454, 1543, 1711, 1866, 2963 cm⁻¹; HRMS calcd. for $C_{30}H_{51}Au2CI2N_2PNa^+$: 957.238922; found 957.239014.

Compound 10: A solution of 8 in toluene (15 mL) was prepared from 7 (65.0 mg, 0.116 mmol)

and KHMDS (29.9 mg, 0.150 mmol) as described above. This solution was cooled to -78 °C before [(Me₂S)AuCl] (34.3 mg, 0.116 mmol) was added followed by [RhCl(cod)]₂ (28.6 mg, 0.058 mmol). The resulting mixture was allowed to come to room temperature and was stirred for additional 16 h. Finally, the obtained suspension was filtered and dried in vacuum to afford the desired

product as a yellow solid (60 mg, 54%). ³¹P-NMR indicated this compound to be contaminated with 8% of **9**. ¹H NMR (400 MHz, CD_2CI_2) δ = 1.15 (d, *J* = 6.9 Hz, 12H), 1.20 (d, *J* = 6.9 Hz, 12H), 1.26 (d, *J* = 6.9 Hz)

Hz, 6H), 1.33 (m(br), 12H), 1.88 (m(br), 2H), 2.00 (m(br), 2H), 2.41 (m, 2H), 2.78 (m, 1H), 3.64 (m, 2H), 4.16 (m, 2H), 4.90 (m(br), 2H), 5.21 (m(br), 1H), 5.52 (m(br), 1H), 6.98 (d, J = 3.1 Hz, 2H) ppm. ³¹P NMR (161 MHz, CD_2Cl_2) $\delta = -30.94$ (d, J = 122 Hz) ppm. ¹³C NMR (100 MHz, CD_2Cl_2) $\delta = 20.7$, 21.2, 22.7, 23.5, 33.0, 33.1, 33.5, 110.8 (d, J = 9.0 Hz), 122.5, 122.8, 122.9, 123.0, 133.8, 150.8, 151.7 (d, J = 9.2 Hz) ppm. ¹³C NMR (100 MHz, CD_2Cl_2) $\delta = 21.7$, 23.9, 25.7, 29.0, 29.9, 31.3, 32.4, 34.0, 34.5, 80.1, 97.8, 98.7, 117.7, 124.1, 124.2, 129.4, 150.4, 152.6 (d, J = 8.0 Hz) ppm. IR (neat) v = 678, 883, 1036, 1139, 1349, 1447, 1518, 1855, 2948 cm⁻¹. HRMS calcd. for C₃₈H₆₃AuClN₂PRh: 913.313556, found 913.313689.

Single crystal X-ray structure analyses

Crystal structure analysis of 3

Figure S-1. Molecular structure of $3 \cdot \frac{1}{2}(C_7H_8)$.

Crystal data for 3·½C₇H₈: Chemical formula 2 [C₃₆ H₂₉ N P₂] · C₇ H₈, $F_w = 1167.22$ g mol⁻¹, yellow needle from toluene, crystal size 0.05 x 0.02 x 0.02 mm³, crystal system triclinic, space group *P*1, *a* = 10.5881(12), *b* = 11.7546(14), *c* = 13.4581(16) Å, $\alpha = 73.849(2)$, $\beta = 73.626(2)$, $\gamma = 78.953(2)^{\circ}$, *V* = 1531.9(3) Å³, *T* = 100 K, $\rho_c = 1.265$ Mg m⁻³, *Z* = 1, $\lambda = 0.71073$ Å, $\mu = 0.172$ mm⁻¹, Gaussian absorption correction ($T_{min} = 0.99209$, $T_{max} = 0.99724$), scaling *SADABS*, Brucker AXS Mach3 ApexII diffractometer equipped with Helios multilayer X-ray optics, 5.10 < θ < 32.04°, 47413 reflections collected, 10542 unique reflections ($R_{int} = 0.0715$), 7527 reflections with *I* > 2 σ (*I*). Intensity statistics:

Inf - 1.80 1.80 - 1.44 1.44 - 1.26 1.26 - 1.14 1.14 - 1.06 1.06 - 1.00 1.00 - 0.95 0.95 - 0.91 0.91 - 0.87 0.87 - 0.84	538 551 538 545 545 546 545 531 662 563	557 551 538 545 545 546 545 531 662 563	96.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	6.09 6.38 6.17 5.78 5.44 5.09 4.88 4.64 4.43 4.23	52.2 19.8 17.9 16.7 9.7 8.0 8.4 6.8 6.5 5.7	47.23 33.89 31.46 27.07 19.27 15.84 16.06 13.50 12.65 10.34	0.0261 0.0376 0.0440 0.0477 0.0666 0.0770 0.0818 0.1001 0.1040 0.1252	0.0150 0.0198 0.0222 0.0254 0.0366 0.0442 0.0459 0.0564 0.0619 0.0721
0.87 - 0.84	563	563	100.0	4.23	5.7	10.34	0.1252	0.0721
0.84 - 0.81 0.81 - 0.78 0.78 - 0.76	653 749 571	653 749 571	100.0 100.0 100.0	4.06 3.93 3.78	4.7 4.2 3.9	8.90 7.77 6.91	0.1492 0.1694 0.1795	0.0884 0.1054 0.1164
0.76 - 0.74 0.74 - 0.72	663 720	663 720	100.0	3.59 3.51	3.9 3.8 3.1	6.36 5.23	0.1964	0.1288
0.72 - 0.70 0.70 - 0.68	799 820	886	100.0 92.6	3.35 2.80	2.7 2.5	4.59 3.81	0.2607 0.2832	0.1983 0.2555
0.68 - 0.67 Inf - 0.67	2 10574		15.4 	0.15 4.46	1.2 9.6	0.38 14.78	0.0656	2.4259 0.0484

Solution by direct methods (*SHELXS*-97), refinement by full-matrix least-squares on F^2 (*SHELXL*-97, G. M. Sheldrick, *Acta Cryst.* **2008**, *A64*, 112-122), H atoms riding. The position of the N atom in the pyridyl group could not be located by refining the structure with C atoms in all the 6-membered rings, which indicates that the pyridyl group may be disordered over several positions in the molecule. Nevertheless, a lack of electron density in a region where the H atom of a C-H group would be expected suggests that N1 is the likely position of the N atom. The crystal contains a toluene molecule that is disordered about a crystallographic centre of symmetry. Disordered atoms were refined with isotropic atomic displacement parameters and half occupancy. Reflections above 4 Å resolution were affected by the beamstop and removed from the final refinement cycles. $R_1 = 0.053 [I > 2\sigma(I)]$, w $R_2 = 0.152$ (all data), 381 parameters, S = 1.042, residual electron density +0.90 / -0.71 e Å⁻³ [in the vicinity of C42 (0.57 Å) and C37 (0.53 Å), respectively]. CCDC 914763.

Figure S-2. Molecular structure of 4.CH₂Cl₂.

Crystal data for 4·CH₂Cl₂: Chemical formula $[C_{54} H_{44} Au N P_3]^+ [F_6 Sb]^- C_2 H_2 Cl_2$, $F_w = 1317.45 \text{ g mol}^{-1}$, colourless plate from dichloromethane/pentane, crystal size 0.010 x 0.010 x 0.004 mm³, crystal system triclinic, space group *P*1, *a* = 12.0585(17), *b* = 15.106(2), *c* = 16.288(2) Å, $\alpha = 63.058(2)$, $\beta = 68.541(3)$, $\gamma = 83.121(3)^\circ$, V = 2457.9(6) Å³, T = 100 K, $\rho_c = 1.780$ Mg m⁻³, Z = 2, $\lambda = 0.71073$ Å, $\mu = 3.800$ mm⁻¹, Gaussian absorption correction ($T_{min} = 0.95624$, $T_{max} = 0.98694$), scaling *SADABS*, Brucker AXS Mach3 ApexII diffractometer equipped with Helios multilayer X-ray optics, $1.82 < \theta < 23.44^\circ$, 34062 reflections collected, 7175 unique reflections ($R_{int} = 0.0705$), 5917 reflections with $I > 2\sigma(I)$. Intensity statistics:

Inf - 2.44 2.44 - 1.93 1.93 - 1.68 1.68 - 1.52 1.52 - 1.42 1.42 - 1.33 1.33 - 1.26 1.26 - 1.20 1.20 - 1.15 1.15 - 1.11 1.11 - 1.07 1.07 - 1.04 1.04 - 1.01 1.01 - 0.98 0.98 - 0.96	360 371 369 373 365 409 382 421 428 388 464 373 437 501 362	361 374 369 373 365 409 382 421 428 388 464 373 437 501 362 202	99.7 99.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	5.57 5.52 5.44 5.46 5.37 5.28 5.08 4.87 4.81 4.56 4.49 4.29 4.29 4.29 4.29 4.29 4.02	78.5 52.9 44.9 36.9 35.9 30.1 23.7 22.4 20.2 16.7 18.4 14.9 14.1 13.6 13.0	38.26 32.13 28.36 25.27 24.49 21.00 17.94 16.21 14.86 12.61 13.18 10.91 9.98 9.38 8.59 7.52	0.0327 0.0418 0.0451 0.0518 0.0532 0.0609 0.0772 0.0798 0.0929 0.1043 0.1039 0.1257 0.1286 0.1338 0.1466	0.0196 0.0243 0.0265 0.0300 0.0313 0.0436 0.0484 0.0550 0.0653 0.0648 0.0785 0.0852 0.0912 0.0986 0.132
$\begin{array}{r} 0.98 - 0.96 \\ 0.96 - 0.94 \\ 0.94 - 0.92 \\ 0.92 - 0.89 \end{array}$	362 392 424 359	362 392 424 392	100.0 100.0 100.0 91.6	4.02 4.05 3.93 2.80	13.0 11.4 10.0 8.9	8.59 7.53 6.76 5.35	0.1466 0.1597 0.1749 0.1843	0.0986 0.1132 0.1287 0.1889
Inf - 0.89	7178	7215	99.5	4.72	25.2	16.46	0.0705	0.0483

Solution by direct methods (SHELXS-97), refinement by full-matrix least-squares on F^2 (SHELXL-97, G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122), H atoms riding. The crystal appears to be twinned about (0 0 1) [-2 -2 5] with a rotation matrix of [-1 0 0 0 -1 0 -0.854 -0.895 1.0] (according to PLATON, A. L. Spek, Acta Cryst. 2009, D65, 148-155). The refined fractional contribution of the second component was 0.09987(154). The crystal diffracted so poorly that the possible non-merohedral intensity data of this minor second component could not be collected. It cannot be ruled out that the reflections for which the measured intensities were significantly higher than the calculated ones based on the model, are not a result of loss of solvent from the crystal and corresponding crystallinity with retention of the gold contribution. The probable position of the N atom was determined by refining atomic displacement parameters of all atoms in the 6-membered rings as C atoms. The C atom, with the smallest atomic displacement parameter and no adjacent electron density that could be construed as an H atom, was chosen to be N. Subsequent refinement cycles with atomic displacement parameters of all ring atoms restrained to be similar with a standard uncertainty of 0.001 (252 restraints) suggested that this choice was likely, but not certain. We cannot rule out that the N atom is disordered over several pyridyl rings. Assuming that the final model is correct, the larger than unity goodness-of-fit of 1.835 at the end of refinement suggests that the weights attributed to the measured intensities were underestimated. R_1 = $0.054 [I > 2\sigma(I)]$, wR₂ = 0.103 (all data), 620 parameters, S = 1.835, residual electron density +2.37 / -1.22 e Å-3 [in the vicinity of Au1 (1.07 Å and 0.74 Å, respectively)]. CCDC 914764.

Figure S-3. Molecular structure of $5 \cdot C_4 H_{10}O \cdot 1.26(CH_2CI_2)$.

Crystal data for 5·C₄H₁₀O·1.26(CH₂Cl₂): Chemical formula $[C_{54} H_{44}$ Au Cl Cu N P₃]⁺ $[F_6 Sb]^-$ · C₄ H₁₀ O· 1.26(C₂ H₂ Cl₂), $F_w = 1512.60 \text{ g mol}^{-1}$, yellow needle from dichloro-methane/diethylether/hexane, crystal size 0.100 x 0.020 x 0.010 mm³, crystal system monoclinic, space group *C*2/c, *a* = 31.703(8), *b* = 11.136(3), *c* = 38.620(11) Å, $\beta = 114.233(4)^\circ$, *V* = 12433(6) Å³, *T* = 100 K, $\rho_c = 1.616 \text{ Mg m}^{-3}$, *Z* = 8, $\lambda =$ 0.71073 Å, $\mu = 3.410 \text{ mm}^{-1}$, Gaussian absorption correction ($T_{min} = 0.73288$, $T_{max} = 0.96823$), scaling *SADABS*, Brucker AXS Mach3 ApexII diffractometer equipped with Helios multilayer X-ray optics, 2.42 < $\theta < 27.88^\circ$, 94800 reflections collected, 14815 unique reflections ($R_{int} = 0.0946$), 12024 reflections with *I* > 2 σ (*J*). Intensity statistics:

Inf - 2.07 2.07 - 1.63 1.63 - 1.42 1.42 - 1.28 1.28 - 1.18 1.18 - 1.11 1.11 - 1.05 1.05 - 1.00 1.00 - 0.96	844 843 850 917 931 873 929 953 950	852 844 850 917 931 873 929 953 950	99.1 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0	7.56 8.05 8.14 7.82 7.38 6.86 6.60 6.31 6.00	84.4 52.4 45.8 35.3 25.8 24.6 20.0 17.6 16.6	26.19 23.84 22.77 20.86 17.83 16.32 14.47 12.67 11.57	0.0522 0.0567 0.0617 0.0708 0.0883 0.0930 0.1138 0.1237 0.1327	0.0309 0.0326 0.0336 0.0376 0.0444 0.0500 0.0589 0.0674 0.0751
0.96 - 0.92 0.92 - 0.89	1100 929	1100 929	100.0 100.0	5.75 5.63	14.2 12.8	10.56 9.39	0.1472 0.1694	0.0866 0.0978
0.89 - 0.86	1078	1078	100.0	5.33	11.2	8.52	0.1745	0.1119
0.86 - 0.84	849	849	100.0	5.20	9.8	7.42	0.1995	0.1305
0.84 - 0.82	878	878	100.0	5.10	9.2	7.23	0.2180	0.1412
0.82 - 0.80	981	981	100.0	4.85	8.5	6.38	0.2291	0.1614
0.80 - 0.78	1111	1111	100.0	4.84	7.5	5.79	0.2490	0.1787
0.78 - 0.76	1222	1223	99.9	4.55	6.6	4.94	0.2926	0.2166
0.76 - 0.74	595	812	73.3	1.97	5.7	3.25	0.2989	0.3080
Inf - 0.74	16833	17060	98.7	5.95	21.8	12.53	0.0947	0.0638

Solution by direct methods (SHELXS-97), refinement by full-matrix least-squares on F^2 (SHELXL-97, G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122), H atoms riding. The Cu and Cl atoms in the cation are each disordered over two positions with refined occupancy of 0.802(7):0.198(7). Bond distances, angles and vectors indicate that in the major component (80%), Cu1A is bonded to N1 of the pyridyl group with a Cu1A-N1 bond distance of 2.267(6) Å. As a result, the CI atom, CI1A, which bonded to Cu1A, is bent away from N1 in the plane of Au1, Cu1A, N1, such that the C1-Cu1A-Cl1A bond angle is 148.3(2)°. Bond angles around the Cu atom of the minor component indicate that Cu1B undergoes interaction with an N atom of a minor pyridyl ring component near to the position of C20. Due to the partial occupancy of solute and the presence of Au, Cu and Cl in the structure, it was not possible to locate the exact position of this pyridyl group, but it is probably bonded to P2. In addition, the large anisotropic atomic displacement parameter of CI1B indicate that the partial pyridyl group is itself disordered. The crystal contains both solute ether and dichloromethane. Both dichloromethane molecules are present with refined partial occupancy of 62.9(4)%. Several low angle reflections were shaded by the beamstop and were not used in the final refinement cycles. Assuming that the final model is correct, the larger than unity goodness-of-fit of 1.319 at the end of refinement suggests that the weights attributed to the measured intensities were slightly underestimated. $R_1 = 0.052 [l > 2\sigma(l)]$, $wR_2 = 0.120$ (all data), 734 parameters, S = 1.319, residual electron density +1.88 / -2.68 e Å⁻³ [in the vicinity of Au1 (0.91 Å and 0.05 Å. respectively)]. CCDC 914765.

Figure S-4. Molecular structure of 6.2(CH₂Cl₂).

Crystal data for 6·2(CH₂Cl₂): Chemical formula $[C_{54} H_{44} Au_2 CI N P_3]^+ [F_6 Sb]^- \cdot 2(C_2 H_2 Cl_2), F_w = 1634.80 g mol⁻¹, colourless plate from dichloro-methane/diethylether, crystal size 0.036 x 0.036 x 0.010 mm³, crystal system triclinic, space group$ *P*1,*a*= 11.0964(17),*b*= 16.611(3),*c*= 17.876(3) Å,*α*= 63.214(2),*β*= 74.097(3),*γ*= 71.051(3)°,*V*= 2750.0(7) Å³,*T* $= 100 K, <math>\rho_c$ = 1.974 Mg m⁻³, *Z* = 2, λ = 0.71073 Å, μ = 6.199 mm⁻¹, Gaussian absorption correction (T_{min} = 0.77426, T_{max} = 0.94267), scaling *SADABS*, Brucker AXS Mach3 ApexII diffractometer equipped with Helios multilayer X-ray optics, 2.18 < θ < 26.78°, 58526 reflections collected, 11609 unique reflections (R_{int} = 0.0799), 8203 reflections with *I* > 2 σ (*I*). Intensity statistics:

Inf - 2.15 2.15 - 1.72 1.72 - 1.49 1.49 - 1.35 1.35 - 1.25 1.25 - 1.18 1.18 - 1.12 1.12 - 1.07	584 583 614 614 620 594 588 641	586 583 614 614 620 594 588 641	99.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0	6.34 6.27 6.20 6.13 5.99 5.78 5.52 5.30	56.0 30.3 26.3 21.7 15.9 12.9 10.3 10.6	34.91 28.06 25.79 23.01 19.20 16.30 13.16 13.04	0.0289 0.0374 0.0443 0.0514 0.0669 0.0791 0.0963 0.1004	0.0221 0.0258 0.0281 0.0312 0.0382 0.0461 0.0569 0.0601
1.07 - 1.03 1.03 - 0.99	582 695		100.0	5.12 4.99	8.8 8.1	10.75 9.60	0.1174 0.1319	0.0725 0.0818
0.99 - 0.96 0.96 - 0.93	600 673		100.0 100.0	4.75 4.62	7.8 6.4	9.14 7.59	0.1395 0.1648	0.0888 0.1100
0.93 - 0.90 0.90 - 0.87	795 868	868	100.0	4.46	5.2 4.6	6.08 5.24	0.1962 0.2198	0.1374 0.1633
0.87 - 0.85 0.85 - 0.83	662 737	737	100.0	4.27	3.6	4.13	0.2832	0.2073
0.83 - 0.81 0.81 - 0.79	795 368		100.0 77.6	3.95 2.43	2.9 2.8	3.19 2.78	0.3276 0.3292	0.2842 0.3520
Inf - 0.79	11613	11721	99.1	4.99	12.6	12.61	0.0762	0.0585

Solution by direct methods (SHELXS-97), refinement by full-matrix least-squares on F^2 (SHELXL-97, G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122), H atoms riding. One of the phenyl/pyridyl groups attached to P was rotationally disordered over two positions about C19. The location of the single 2pyridyl group attached to P could not be determined with certainty. However, refinement of all the sixmembered ring atoms as C resulted in smaller than average C atomic displacement parameters for C01 and C20A, indicating that these positions are the preferential locations of N. Position C20A and half of position C01 were refined as N atoms (N1A and N1B, respectively). Distances of these two N atoms to the Au atom Au2 (N1A...Au2 3.31(1) and N1B...Au2 3.41(1) Å) indicate that the 2-pyridyl group is not bonded to Au2. This is confirmed by the almost linear C1-Au2-Cl1 angle of 178.8(2)°. The crystal contains two solute dichlormethane molecules. The atomic displacement parameter of one CI atom (Cl4) is somewhat anisotropic. Attempts to model the disorder of this atom by two atoms with half occupancy were unsuccessful, since the close proximity of a centre of symmetry, and associated symmetry related molecule, prevented an otherwise chemically sensible interpretation of the disorder. Several low angle reflections were shaded by the beamstop and were not included in the final refinement cycles. R_1 = $0.051 [I > 2\sigma(I)]$, wR₂ = 0.139 (all data), 648 parameters, S = 1.270, residual electron density +3.23 / -1.98 e Å⁻³ [in the vicinity of Au2 (0.92 Å) and Cl4 (0.74 Å), respectively)]. CCDC 914766.

Figure S-5. Molecular structure of $9 \cdot C_4 H_{10}O$.

Crystal data for 9·C₄H₁₀O: Chemical formula [C₃₀ H₅₁ Au₂ Cl₂ N₂ P]· (C₄ H₁₀ O), $F_w = 1009.65$ g mol⁻¹, colourless prism from dichloromethane/diethylether, crystal size 0.110 x 0.100 x 0.060 mm³, crystal system monoclinic, space group *P*2₁/n, *a* = 12.2004(15), *b* = 18.010(2), *c* = 17.840(2) Å, $\beta = 96.719(2)^{\circ}$, V = 3893.2(8) Å³, T = 100 K, $\rho_c = 1.723$ Mg m⁻³, Z = 4, $\lambda = 0.71073$ Å, $\mu = 7.733$ mm⁻¹, Gaussian absorption correction ($T_{min} = 0.35063$, $T_{max} = 0.67230$), scaling *SADABS*, Brucker AXS Mach3 ApexII diffractometer equipped with Helios multilayer X-ray optics, 1.61 < θ < 31.02°, 112428 reflections collected, 12388 unique reflections ($R_{int} = 0.0279$), 11258 reflections with $I > 2\sigma(I)$. Intensity statistics:

Inf - 2.88 2.88 - 1.90 1.90 - 1.50 1.50 - 1.31 1.31 - 1.18 1.18 - 1.10 1.10 - 1.03 1.03 - 0.98 0.98 - 0.93	192 452 640 636 685 605 690 616 760	195 452 640 636 685 605 690 616 760	98.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	11.00 12.05 12.14 11.95 11.55 10.90 10.31 9.74 9.39	133.0 88.5 73.2 49.5 43.0 41.2 34.0 29.2 25.6	107.25 104.04 98.63 85.15 77.13 71.55 62.01 56.13 50.59	0.0178 0.0167 0.0179 0.0212 0.0224 0.0240 0.0267 0.0287 0.0314	0.0074 0.0071 0.0074 0.0083 0.0092 0.0097 0.0109 0.0124 0.0136
1.50 - 1.31	636	636	100.0	11.95	49.5	85.15	0.0212	0.0083
1.31 - 1.18	685	685	100.0	11.55	43.0	77.13	0.0224	0.0092
1.18 - 1.10	605	605	100.0	10.90	41.2	71.55	0.0240	0.0097
1.10 - 1.03	690	690	100.0	10.31	34.0	62.01	0.0267	0.0109
1.03 - 0.98	616	616	100.0	9.74	29.2	56.13	0.0287	0.0124
0.98 - 0.93	760	760	100.0	9.39	25.6	50.59	0.0314	0.0136
0.93 - 0.90	532	532	100.0	8.89	24.4	47.99	0.0337	0.0147
0.90 - 0.87	603	603	100.0	8.77	21.2	43.00	0.0380	0.0163
0.87 - 0.84	721	721	100.0	8.35	19.4	40.25	0.0391	0.0179
0.84 - 0.81	796	796	100.0	8.09	16.6	34.55	0.0466	0.0206
0.81 - 0.79	628	628	100.0	7.79	16.0	32.99	0.0474	0.0220
0.79 - 0.77	666	666	100.0	7.60	13.0	27.66	0.0565	0.0259
0.77 - 0.76	369	369	100.0	7.38	13.9	27.77	0.0516	0.0255
0.76 - 0.74	791	791	100.0	7.16	12.6	25.91	0.0590	0.0283
0.74 - 0.72	875	875	100.0	7.00	12.8	24.82	0.0573	0.0291
0.72 - 0.71	485	485	100.0	6.58	11.4	22.83	0.0666	0.0335
0.71 - 0.70	510	510	100.0	6.68	10.3	21.42	0.0724	0.0361
0.70 - 0.69	503	546	92.1	5.45	11.2	20.29	0.0685	0.0390
Inf - 0.69	12755	12801	99.6	8.92	29.3	49.28	0.0277	0.0135

Solution by direct methods (*SHELXS*-97), refinement by full-matrix least-squares on F^2 (*SHELXL*-97, G. M. Sheldrick, *Acta Cryst.* **2008**, *A64*, 112-122), H atoms riding. $R_1 = 0.0148 [I > 2\sigma(I)]$, $wR_2 = 0.0351$ (all data), 395 parameters, S = 1.029, residual electron density +1.93 / -1.22 e Å⁻³ [in the vicinity of Au2 (0.68 Å) and Cl2 (0.73 Å), respectively)]. CCDC 914767.

Figure S-6. Molecular structure of 10.

Crystal data for 10: Chemical formula [C₃₈ H₆₃ Au Cl₂ N₂ P Rh], $F_w = 949.65$ g mol⁻¹, yellow needle from dichloromethane/diethylether, crystal size 0.190 x 0.120 x 0.040 mm³, crystal system monoclinic, space group *C*2/c, *a* = 24.580(3), *b* = 26.348(4), *c* = 15.250(2) Å, $\beta = 126.810(2)^\circ$, *V* = 7908(2) Å³, *T* = 100 K, $\rho_c = 1.595$ Mg m⁻³, *Z* = 8, $\lambda = 0.71073$ Å, $\mu = 4.327$ mm⁻¹, Gaussian absorption correction ($T_{min} = 0.18962$, $T_{max} = 0.76362$), scaling *SADABS*, Brucker AXS Mach3 ApexII diffractometer equipped with Helios multilayer X-ray optics, 2.27 < θ < 30.51°, 110186 reflections collected, 12070 unique reflections ($R_{int} = 0.0505$), 10548 reflections with *I* > 2 σ (*I*). Intensity statistics:

Inf - 2.47	296	297	99.7	11.69	56.8	50.25	0.0387	0.0173
2.47 - 1.63	711	711	100.0	12.03	38.8	46.92	0.0378	0.0166
1.63 - 1.30	948	948	100.0	11.97	24.9	41.83	0.0386	0.0175
1.30 - 1.13	1016	1016	100.0	11.25	19.6	36.70	0.0427	0.0193
1.13 - 1.02	1051	1051	100.0	10.31	16.4	32.38	0.0460	0.0218
1.02 - 0.95	930	930	100.0	9.57	13.5	28.95	0.0503	0.0242
0.95 - 0.89	1085	1085	100.0	8.93	11.4	25.22	0.0573	0.0275
0.89 - 0.85	862	862	100.0	8.55	9.5	22.33	0.0639	0.0310
0.85 - 0.81	1089	1089	100.0	8.09	8.4	20.11	0.0716	0.0348
0.81 - 0.78	943	943	100.0	7.67	7.2	17.62	0.0780	0.0399
0.78 - 0.75	1094	1094	100.0	7.39	7.3	17.66	0.0838	0.0416
0.75 - 0.73	833	833	100.0	7.06	6.3	15.18	0.0962	0.0480
0.73 - 0.71	956	956	100.0	6.83	6.0	14.57	0.0988	0.0509
0.71 - 0.69	1047	1047	100.0	6.57	5.4	12.82	0.1109	0.0572
0.69 - 0.67	1178	1178	100.0	6.29	4.7	11.53	0.1265	0.0663
0.67 - 0.66	641	641	100.0	6.05	4.0	10.05	0.1463	0.0773
0.66 - 0.64	1415	1415	100.0	5.86	3.9	9.80	0.1489	0.0813
0.64 - 0.63	758	758	100.0	5.65	3.4	8.21	0.1724	0.0963
0.63 - 0.62	843	843	100.0	5.44	3.2	7.97	0.1829	0.1036
0.62 - 0.61	854	856	99.8	5.23	3.0	7.18	0.1921	0.1156
0.61 - 0.59	980	1554	63.1	1.64	2.7	4.49	0.2052	0.1986
Inf - 0.59	19530	20107	97.1	7.49	10.4	19.86	0.0579	0.0344

Solution by direct methods (*SHELXS*-97), refinement by full-matrix least-squares on F^2 (*SHELXL*-97, G. M. Sheldrick, *Acta Cryst.* **2008**, *A64*, 112-122), H atoms riding. Reflections above 9 Å resolution were shaded by the beamstop and removed from the final least-squares refinement cycles. $R_1 = 0.020 [I > 2\sigma(I)]$, w $R_2 = 0.049$ (all data), 420 parameters, S = 1.228, residual electron density +1.56 / -1.04 e Å⁻³ [in the vicinity of Rh2 (0.92 Å) and Au1 (0.76 Å), respectively)]. CCDC 914768.